Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000102">
                <pb pagenum="19" xlink:href="010/01/027.jpg"/>
                <arrow.to.target n="marg19"/>
              </s>
            </p>
            <p type="margin">
              <s id="s.000103">
                <margin.target id="marg19"/>
              Cap. 2. dę
                <lb/>
              momentis
                <lb/>
              grauium in
                <lb/>
              fluido inna­
                <lb/>
              tantium</s>
            </p>
            <p type="main">
              <s id="s.000104">SIt pondus A maius, B verò minus alligata extre­
                <lb/>
              mitatibus funis ADB, qui ſupponatur omninò
                <lb/>
              grauitate carere, & reuoluatur circa trochleam CDE
                <lb/>
              conuertibilem circa axim fixum F. patet quòd funes
                <lb/>
              AC, & BE perpendiculariter ad ho­
                <lb/>
                <figure id="id.010.01.027.1.jpg" xlink:href="010/01/027/1.jpg"/>
                <lb/>
              rizontem CE prementes, & extenſi
                <lb/>
              contingunt peripheriam rotæ in ter­
                <lb/>
              minis oppoſitis C, & E eiuſdem dia­
                <lb/>
              metri, ſeu libræ horizontalis, ergo
                <lb/>
              funes CA, & EB ſunt inter ſe paralle­
                <lb/>
              li;
                <expan abbr="coniũgatur">coniungatur</expan>
              poſtea recta linea AB,
                <lb/>
              ſeceturque bifariam in G, & vt pon­
                <lb/>
              dus A ad B ita fiat diſtantia BI ad IA
                <lb/>
                <expan abbr="manifeſtũ">manifeſtum</expan>
              eſt (ex mechanicis) punc­
                <lb/>
              tum I eſſe centrum grauitatis com­
                <lb/>
              munis duorum colligatorum ponde­
                <lb/>
              rum A & B, funis enim hanc propor­
                <lb/>
              tionem non alterat, cùm nullius gra­
                <lb/>
              uitatis ſupponatur: aſcendat poſtea
                <lb/>
              pondus minus B vbicumque ad L, & deprimatur ma­
                <lb/>
              ius pondus A vſque ad K. dico quod ambo in com­
                <lb/>
              muni centro grauitatis deſcendunt circa libræ cen­
                <lb/>
              trum, ſeu fulcimentum ſtabile G motu directo, & per­
                <lb/>
              pendiculari ad horizontem. </s>
              <s id="s.000105">
                <expan abbr="coniũgatur">coniungatur</expan>
              recta lineą
                <lb/>
              KL quia funis ADB æqualis, imò idem eſt, quàm K
                <lb/>
              DL, igitur ablato communi ADL erit deſcenſus AK
                <lb/>
              æqualis aſcenſui BL; quare in triangulis ſimilibus
                <lb/>
              ob æquidiſtantiam laterum AK & BL homologorum
                <lb/>
              vt AK ad BL ita erit AG ad GB & ita pariter KML </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>