Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
[91. Figure]
[92. Figure]
[93. Figure]
[94. Figure]
[95. Figure]
[96. Figure]
[97. Figure]
[98. Figure]
[99. Figure]
[100. Figure]
[101. Figure]
[102. Figure]
[103. Figure]
[104. Figure]
[105. Figure]
[106. Figure]
[107. Figure]
[108. Figure]
[109. Figure]
[110. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000968">
                <pb pagenum="189" xlink:href="010/01/197.jpg"/>
                <arrow.to.target n="marg242"/>
                <lb/>
              gulo ENF ducatur IK parallela EF, & æqualis ipſi
                <lb/>
              PB, & ducta RNS parallela ipſis EF, & IK reuolua­
                <lb/>
              tur figura circa axim RS vt fiant duo cylindri
                <expan abbr="concẽ-trici">concen­
                  <lb/>
                trici</expan>
              EFGH, & IKLO; intelligatur modò ſpatium
                <lb/>
              internum IKLO repletum ſubſtantia homogenea ip­
                <lb/>
              ſi cylindro DB, & reſiduum ambiens EFGH explea­
                <lb/>
              tur ex eadem ſubſtantia corporea ipſius AD; & quia
                <lb/>
              AB ad MB, ſiuè cylinder AC ad cylindrum MC, vel
                <lb/>
              cylinder EG ad cylindrum IL triplicatam propor­
                <lb/>
              tionem habet lateris AB ad PB, vel EF ad IK; ergo
                <lb/>
              cylinder AC ad MC eamdem proportionem habet,
                <lb/>
              quam integer cylindrus EG ad cauitatem cylindri­
                <lb/>
              cam IL, & per conuerſionem rationis cylinder AC
                <lb/>
              ad. </s>
              <s id="s.000969">cylindrum AD ſe habet vt totus cylindrus EG
                <lb/>
              ad partem continentem EKGO. </s>
              <s id="s.000970">Suntque cylindri
                <lb/>
              AC, & EG æquales, cùm ſint ſimiles, & ſimilitèr po­
                <lb/>
              ſiti circa latera æqualia AB, & EF, igitur cylinder
                <lb/>
              excauatus EKGO æqualis eſt ſibi homogeneo cylin­
                <lb/>
              dro AD, proindeque cylinder IL æqualis, & homo­
                <lb/>
              geneus erit ipſi MC, quod fuerat. </s>
            </p>
            <p type="margin">
              <s id="s.000971">
                <margin.target id="marg242"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="main">
              <s id="s.000972">His præhabitis noto, quòd cùm agitur de faculta­
                <lb/>
                <arrow.to.target n="marg243"/>
                <lb/>
              te, ſeù principio quo corpora vim faciunt tendendo
                <lb/>
              deorsùm, quęrimus tantummodò gradum virtutis
                <expan abbr="cõ-preſſiuæ">con­
                  <lb/>
                preſſiuæ</expan>
              eorum, quæ procùl dubio à grauitate, ſeu
                <lb/>
              pondere eorum menſuratur, hoc verò duplici modo
                <lb/>
              augeri poſſe conſtat, aut per multiplicationem eiuſ­
                <lb/>
                <arrow.to.target n="marg244"/>
                <lb/>
              dem corporis, vt cum lignea columna augetur mole,
                <lb/>
              aut cum
                <expan abbr="ſubſtãtia">ſubſtantia</expan>
              corporea, & plena in eodem ſpatio
                <lb/>
              diſſeminata, & contenta magis ſtringitur, conden-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>