Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
< >
page |< < (4) of 213 > >|
1194DE CENTRO GRAVIT. SOLID. o n ipſi a c. Quoniam enim triangulorum a b k, a d k, latus
b
k eſt æquale lateri k d, &
anguliq́;
& eadem quoqueratione oſtendetur b c
æqualis
c d;
& & erunt anguli b
a
c, a c d coalterni inter
ſe
æquales;
itemq́; d a c,
a
c b.
& a d ipſi b c æquidi-
ſtat
.
Atuero cum lineæ
a
b, c d inter ſe æquidi-
ſtantes
bifariam ſecen-
tur
in punctis e g;
erit li
nea
l e k g n diameter ſe
ctionis
, &
Sunt autẽ a d,
b
c inter ſe ſe æquales, &
æquidiſtantes. itemq́; h d, f e; & quæ ipſas coniunguntrectæ
2233. primit lineæ æquales, &
æquidiſtantes erunt. æquidiſtãt igitur b a,
c
d diametro m o:
& pariter a d, b c ipſi l n æquidiſtare o-
ſtendemus
.
& b c ipſi c d congruet: f in g: & & el in h o, et fm in g n. Atipſa lz in z o; et m φ in φ n