Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
[Figure 141]
[Figure 142]
[Figure 143]
[Figure 144]
[Figure 145]
[Figure 146]
[Figure 147]
[Figure 148]
[Figure 149]
[Figure 150]
< >
page |< < of 213 > >|
136FED. COMMANDINI medis. ergo punctum v extra p riſima a f poſitum, centrũ
erit magnitudinis cõpoſitæ e x omnibus priſmatibus g z r,
r β t, t γ x, x δ k, k δ y, y u, u s, s α h, quod fieri nullo modo po
teſt.
eſt enim ex diſſinitione centrum grauitatis ſolidæ figu
ræ intra ipſam poſitum, non extra.
quare relinquitur, ut cẽ
trum grauitatis priſmatis ſit in linea K m.
Rurſus b c bifa-
riam in ξ diuidatur:
& ducta a ξ, per ipſam, & per lineam
a g d plan um ducatur;
quod priſma ſecet: faciatq; in paral
lelogrammo b f ſectionem ξ π di uidet punctum π lineam
quoque c f bifariam:
& erit p lani eius, & trianguli g h K
communis ſectio g u;
quòd p ũctum u in inedio lineæ h K
91[Figure 91] poſitum ſi t.
Similiter demonſtrabimus centrum grauita-
tis priſm atis in ipſa g u ineſſe.
ſit autem planorum c f n l,
a d π ξ communis ſectio linea ρ ο τ quæ quidem priſmatis
axis erit, cum tranſeat per centra grauitatis triangulorum
a b c, g h k, d e f, ex quartadecima eiuſdem.
ergo centrum
grauitatis pri ſmatis a f eſt punctum σ, centrum

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index