Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 151]
< >
page |< < of 213 > >|
158FED. COMMANDINI ut altitudo ad altitudinem & componendo conuertendo
que ſolidum a b g h, hoc eſt ſolidum a b c d ipſi æquale, ad
117. quinti. ſolidum a b e f, ut altitudo ſolidi a b c d ad ſolidi a b e f al-
titudinem.
Sint ſolida parallelepipeda a b, c d in æqualibus baſibus
conſtituta:
ſitq; b e altitudo ſolidi a b: & ſolidi c d altitudo
d f;
quæ quidem maior ſit, quàm b e. Dico ſolidum a b ad
ſolidum c d eandem habere proportionem, quam be ad
d f.
abſcindatur enim à linea d f æqualis ipſi b e, quæ ſit g f:
& per g ducatur planum ſecans ſolidum c d; quod baſibus
æquidiſtet, faciatq;
ſectionẽ h K. erunt ſolida a b, c k æque
2231. unde
cimi
alta inter
112[Figure 112] ſe æqualia
cũ æqua-
les baſes
habeant.
Sed ſolidũ
3318. huius h d ad ſoli
dum c _K_
eſt, ut alti
tudo d g
ad g f alti-
tudinẽ ſe
catur enim ſolidum c d plano baſi
113[Figure 113] bus æquidiſtante:
& rurſus cõpo-
nendo, conuertendoq;
ſolidũ c _k_
ad ſolidum c d, ut g f ad fd.
ergo
447. quinti. ſolidum a b, quod eſt æquale ipſi
c k ad ſolidum c d eam proportio
nem habet, quam altitudo g f, hoc
eſt b e ad d f altitudinem.
Sint deinde ſolida parallelepipe
da a b, a c in eadem baſi;
quorum
axes d e, ſ e cum ipſa æquales

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index