Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
< >
page |< < (3) of 213 > >|
1173DE CENTRO GRAVIT. SOLID. cta b d in g puncto, ducatur c g; & protrahatur ad circuli
uſque circumferentiam;
quæ ſecet a e in h. Similiter conclu
demus c g per centrum circuli tranſire:
& bifariam ſecare
lineam a e;
itemq́; lineas b d, a e inter ſe æquidiſtantes eſſe.
Cumigitur c g per centrum circuli tranſeat; & ad punctũ
f perueniat neceſſe eſt:
quòd c d e f ſit dimidium circumfe
rentiæ circuli.
Quare in eadem
diametro c f erunt centra gra
1113. Archi
medis.
uitatis triangulorum b c d,
a f e, &
quadrilateri a b d e, ex
229. @iuſdé. quibus conſtat hexagonum a b
c d e f.
perſpicuum eſt igitur in
ipſa c f eſſe circuli centrum, &

centrum grauitatis hexagoni.
Rurſus ducta altera diametro
a d, eiſdem rationibus oſtende-
mus in ipſa utrumque cẽtrum
ineſſe.
Centrum ergo grauita-
tis hexagoni, &
centrum circuli idem erit.
Sit heptagonum a b c d e f g æquilaterum atque æquian
gulum in circulo deſcriptum:
& iungantur c e, b f, a g: di-
uiſa autem c e bifariam in pũ
cto h:
& iuncta d h produca-
tur in k.
non aliter demon-
ſtrabimus in linea d k eſſe cen
trum circuli, &
centrum gra-
uitatis trianguli c d e, &
tra-
peziorum b c e f, a b f g, hoc
eſt centrum totius heptago-
ni:
& rurſus eadem centra in
alia diametro cl ſimiliter du-
cta contineri.
Quare & centrum grauitatis heptagoni, &
centrum circuli in idem punctum conucniunt.
Eodem