Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
< >
page |< < of 213 > >|
100ARCHIMEDIS quædam recta linea g i, ſectionibus a g q l, a x d interiecta,
&
ipſi b d æquidiſtans; quæ mediam coni ſectionem in pun
cto h, &
rectam
lineam r y in y
ſecet.
demonſtra
bitur g h dupla
dum demonſtra
ta eſt o g ipſius
g x dupla.
duca-
tur poſtea g ω cõ
tingens a g q l ſe
ctioneming:
&
g c ad b d perpé
dicularis:
iun-
ctaq;
ai produ-
erit
ergo a i æqualis
i q:
& a q ipſi g ω
æquidiſtans.
Demonſtrandũ eſt portionẽ in humidũ demiſ
fam, inclinatamq;
adeo, ut baſis ipſius non cõtingat humi-
dũ, conſiſtere inclinatã ita, ut axis cum ſuperficie humidi
angulum faciat minorem angulo φ:
& baſis humidi ſuper-
ficiem nullo modo contingat.
Demittatur enim in humi-
dum;
& conſiſtat ita, ut baſis ipſius in uno puncto contin-
gat ſuperficiem humidi.
ſecta autem portione per axem,
plano ad humidi ſuperficiem recto, ſit portionis ſectio a n
z l rectanguli coni ſectio:
ſuperficiei humidi a z: axis autẽ
portionis, &
ſectionis diameter b d: ſeceturq; b d in pun-
ctis _K_ r, ut ſuperius dictum eſt:
& ducatur n f quidem ipſi
a z æquidiſtans, &
contingens coni ſectionem in pũcto n;
n t uero æquidiſtans ipſi b d: & n s ad eandem perpendi-
cularis.
Quoniam igitur portio ad humidum in grauitate,
cam habet proportionem, quam quadratum, quod fit à