Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
< >
page |< < (26) of 213 > >|
16326DE CENTRO GRAVIT. SOLID. matis a e axis g h; & priſmatis a f axis l h. Dico priſma
a e ad priſma a f eam proportionem habere, quam g h ad
h l.
ducantur à punctis g l perpendiculares ad baſis pla-
num g K, l m:
& iungantur k h,
118[Figure 118] h m.
Itaque quoniam anguli g h
k, l h m ſunt æquales, ſimiliter ut
ſupra demonſtrabimus, triangu-
la g h K, l h m ſimilia eſſe;
& ut g
K adlm, ita g h ad h l.
habet au
tem priſma a e ad priſma a f ean
dem proportionem, quam altitu
do g k ad altitudinem l m, ſicuti
demonſtratum eſt.
ergo & ean-
dem habebit, quam g h, ad h l.
py
ramis igitur a b c d g ad pyrami-
dem a b c d l eandem proportio-
nem habebit, quam axis g h ad h l axem.
119[Figure 119]
Denique ſint priſmata a e, k o in æqualibus baſibus a b
c d, k l m n conſtituta;
quorum axes cum baſibus æquales
faciant angulos:
ſitq; priſmatis a e axis f g, & altitudo f h:
priſmatis autem k o axis p q, & altitudo p r. Dico priſma
a e ad priſma k o ita eſſe, ut f g ad p q.
iunctis enim g

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index