Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
< >
page |< < (7) of 213 > >|
1257DE CENTRO GRAVIT. SOLID. metrum habens e d. Quoniam igitur circuli uel ellipſis
a e c b grauitatis centrum eſt in diametro b e, &
portio-
nis a e c centrum in linea e d:
reliquæ portionis, uidelicet
a b c centrum grauitatis in ipſa b d conſiſtat neceſſe eſt, ex
octaua propoſitione eiuſdem.
THEOREMA V. PROPOSITIO V.
SI priſma ſecetur plano oppoſitis planis æqui
diſtante, ſectio erit figura æqualis &
ſimilis ei,
quæ eſt oppoſitorum planorum, centrum graui
tatis in axe habens.
Sit priſma, in quo plana oppoſita ſint triangula a b c,
d e f;
axis g h: & ſecetur plano iam dictis planis æquidiſtã
te;
quod faciat ſectionem K l m; & axi in pũcto n occurrat.
Dico _k_ l m triangulum æquale eſſe, & ſimile triangulis a b c
d e f;
atque eius grauitatis centrum eſſe punctum n. Quo-
niam enim plana a b c
82[Figure 82] K l m æquidiſtantia ſecã
1116. unde-
cimi.
tur a plano a e;
rectæ li-
neæ a b, K l, quæ ſunt ip
ſorum cõmunes ſectio-
nes inter ſe ſe æquidi-
ſtant.
Sed æquidiſtant
a d, b e;
cum a e ſit para
lelogrammum, ex priſ-
matis diffinitione.
ergo
&
al parallelogrammũ
erit;
& propterea linea
2234. prim@ _k_l, ipſi a b æqualis.
Si-
militer demonſtrabitur
l m æquidiſtans, &
æqua
lis b c;
& m K ipſi c a.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index