Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
< >
page |< < (20) of 213 > >|
15120DE CENTRO GRAVIT. SOLID. beat eam, quam χ τ ad τ f. erit diuidendo ut χ f ad f τ, ita fi
gura ſolida inſcripta ad partem exceſſus, quæ eſtintra pyra
midem.
Cum ergo à pyramide, cuius grauitatis cẽtrum eſt
punctum f, ſolida figura inſcripta auferatur, cuius centrũ
τ:
reliquæ magnitudinis conſtantis ex parte exceſſus, quæ
eſtintra pyramidem, centrum grauitatis erit in linea τ f
producta, &
in puncto χ. quod fieri non poteſt. Sequitur
igitur, ut centrum grauitatis pyramidis in linea d e;
hoc
eſt in eius axe conſiſtat.
Sit conus, uel coni portio, cuius axis b d: & ſecetur plano
per axem, ut ſectio ſit triangulum a b c.
Dico centrum gra
uitatis ipſius eſſe in linea b d.
Sit enim, ſi fieri poteſt, centrũ
104[Figure 104] e:
perq; e ducatur e f axi æquidiſtans: & quam propor-
tionem habet c d ad d f, habeat conus, uel coni portio ad
ſolidum g.
inſcribatur ergo in cono, uel coni portione

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index