Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
< >
page |< < of 213 > >|
124FED. COMMANDINI in linea e b punctũ g, it aut ſit g e æqualis e f. erit g por-
tionis a b c centrum.
nam ſi hæ portiones, quæ æquales
&
ſimiles ſunt, inter ſe ſe aptentur, ita ut b e cadat in d e,
&
punctum b in d cadet, & g in f: figuris autem æquali-
bus, &
ſimilibus inter ſe aptatis, centra quoque grauitatis
ipſarum inter ſe aptata erunt, ex quinta petitione Archi-
medis in libro de centro grauitatis planorum.
Quare cum
portionis a d c centrum grauitatis ſit ſ:
& portionis
a b c centrum g:
magnitudinis; quæ ex utriſque efficitur:
hoc eſt circuli uel ellipſis grauitatis centrum in medio li-
neæ f g, quod eſt e, conſiſtet, ex quarta propoſitione eiuſ-
dem libri Archimedis.
ergo circuli, uel ellipſis centrum
grauitatis eſt idem, quod figuræ centrum.
atque illud eſt,
quod demonſtrare oportebat.
Ex quibus ſequitur portionis circuli, uel ellip-
ſis, quæ dimidia maior ſit, centrum grauitatis in
diametro quoque ipſius conſiſtere.
81[Figure 81]
Sit enim maior portio a b c, cu_i_us diameter b d, & com-
pleatur circulus, uel ellipſis, ut portio reliqua ſit a e c,

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index