Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
< >
page |< < of 213 > >|
180FED. COMMANDINI fruſtum a d. Sed pyramis q æqualis eſt fruſto à pyramide
abſciſſo, ut dem onſtrauimus.
ergo & conus, uel coni por-
tio q, cuius baſis ex tribus circulis, uel ellipſibus a b, e f, c d
conſtat, &
altitudo eadem, quæ fruſti: ipſi fruſto a d eſt æ-
qualis.
atque illud eſt, quod demonſtrare oportebat.
THEOREMA XXI. PROPOSITIO XXVI.
Cvivslibet fruſti à pyramide, uel cono,
uel coni portione abſcisſi, centrum grauitatis eſt
in axe, ita ut eo primum in duas portiones diui-
ſo, portio ſuperior, quæ minorem baſim attingit
ad portionem reliquam eam habeat proportio-
nem, quam duplum lateris, uel diametri maioris
baſis, vnà cum latere, uel diametro minoris, ipſi
reſpondente, habet ad duplum lateris, uel diame-
tri minoris baſis vnà cũ latere, uel diametro ma-
ioris:
deinde à puncto diuiſionis quarta parte ſu
perioris portionis in ipſa ſumpta:
& rurſus ab in-
ferioris portionis termino, qui eſt ad baſim maio
rem, ſumpta quarta parte totius axis:
centrum ſit
in linea, quæ his finibus continetur, atque in eo li
neæ puncto, quo ſic diuiditur, ut tota linea ad par
tem propinquiorem minori baſi, eãdem propor-
tionem habeat, quam fruſtum ad pyramidẽ, uel
conum, uel coni portionem, cuius baſis ſit ea-
dem, quæ baſis maior, &
altitudo fruſti altitudini
æqualis.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index