Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
< >
page |< < of 213 > >|
92ARCHIMEDIS quia o g ipſius g x eſt dupla. Sit p h dupla h t: & iun-
cta h κ ad ω producatur.
erit totius quidem portionis cen
trum grauitatis k;
partis eius, quæ intra humidum h; eius
uero, quæ extra humidum in linea κ ω, quod ſit ω.
Itaque
demonſtrabitur
58[Figure 58] ſimiliter &
k z ad
humidi ſuperſi-
ciem perpẽdicu-
laris, &
quæ per
puncta h ω æqui-
diſtantes ipſi κ z
ducuntur.
quare
nõ manebit por
tio, ſed inclinabi
tur, donec baſis
ipſius in uno pũ
cto contingat ſu
perficiem humi-
di:
atque ita con
ſiſtet.
nam in por
tionibus æquali-
bus a o q l, a p m l, ductæ erunt ab extremitatibus baſium
a q, a m, quæ æquales portiones abſcindunt:
etenim a o q
ipſi a p m, utin ſuperioribus æqualis demonſtrabitur.
ergo
11E æquales faciunt acutos angulos a q, a m cum diametris ba
ſium:
quòd anguli ad χ & n æquales ſint. quare ſi ducta
h k ad ω producatur, erit totius portionis grauitatis cen-
trum k;
partis eius, quæ in humido h; at eius, quæ extra
humidum in linea h κ;
quod ſit ω: & h k ad humidi ſuper-
ficiem perpendicularis.
per eaſdem igitur rectas lineas,
quod quidem in humido eſt, ſurſum, &
quod extra humi-
dum deorſum feretur.
quare manebit portio, cuius baſis
humidi ſuperficiem in uno puncto continget:
& axis cum
ipſa angulum faciet æqualem angulo χ.
Similiter demon-
22F

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index