Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
< >
page |< < (40) of 213 > >|
9140DE IIS QVAE VEH. IN AQVA. ipſi i m æquidiſtãs, & contingens ſectionem in p; pt uero
æquidiſtans b d, &
p s ad ipſam b d perpendicularis. Demõ
ſtrandũ eſt, portionẽ non cõſiſtereita, ſed inclinari, donec
baſis in uno puncto ſuperficiem humidi cõtingat.
Maneãt
enim eadem, quæ in ſuperiori figura:
ducaturq; o c ad b d
perpendicularis:
& iuncta a x ad q producatur. erit a x
æqualis ipſi x q.
deĩde ducatur o χ ipſi a q æquidiſtãs. Quo
niã igitur portio ad humidũ eã in grauitate proportione
& eandem proportionem habet pars ipſius demerſa ad to
tam;
que erit t p ipſi x o:
cumq; portionum i p m, a o q diame-
tri ſint æquales, &
portiones ipſæ æquales erunt. Rurſus
11B quoniam in por
22C tionibus æquali
bus, &
ſimilibus
a o q l, a p m l,
ductæ ſunt lineæ
a q, i m, quæ æ-
quales portio-
nes auferunt;
il-
la quidem ab ex
tremitate baſis,
hæc autem non
ab extremitate:
cõſtat eam, quæ
ab extremitate
baſis ducta eſt,
minorem facere
angulum acutũ
cum diametro totius portionis.
& quoniam angulus, qui