Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
< >
page |< < (20) of 213 > >|
15120DE CENTRO GRAVIT. SOLID. beat eam, quam χ τ ad τ f. erit diuidendo ut χ f ad f τ, ita fi
gura ſolida inſcripta ad partem exceſſus, quæ eſtintra pyra
midem.
Cum ergo à pyramide, cuius grauitatis cẽtrum eſt
punctum f, ſolida figura inſcripta auferatur, cuius centrũ
τ:
reliquæ magnitudinis conſtantis ex parte exceſſus, quæ
eſtintra pyramidem, centrum grauitatis erit in linea τ f
producta, &
in puncto χ. quod fieri non poteſt. Sequitur
igitur, ut centrum grauitatis pyramidis in linea d e;
hoc
eſt in eius axe conſiſtat.
Sit conus, uel coni portio, cuius axis b d: & ſecetur plano
per axem, ut ſectio ſit triangulum a b c.
Dico centrum gra
uitatis ipſius eſſe in linea b d.
Sit enim, ſi fieri poteſt, centrũ
104[Figure 104] e:
perq; e ducatur e f axi æquidiſtans: & quam propor-
tionem habet c d ad d f, habeat conus, uel coni portio ad
ſolidum g.
inſcribatur ergo in cono, uel coni portione

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index