Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
< >
page |< < (6) of 213 > >|
1236DE CENTRO GRAVIT. SOLID. habebit maiorem proportionẽ,
quam c b ad b a.
fiat o b ad b a,
ut figura rectilinea ad portio-
nes.
cum igitur à circulo, uel el-
lipſi, cuius grauitatis centrum
eſt b, auferatur figura rectilinea
e f g h k l m n, cuius centrum a;
reliquæ magnitudinis ex portio
118. Archi-
medis.
nibus compoſitæ centrum graui
tatis erit in linea a b producta,
&
in puncto o, extra figuram po
ſito.
quod quidem fieri nullo mo
do poſſe perſpicuum eſt.
ſequi-
tur ergo, ut circuli &
ellipſis cen
trum grauitatis ſit punctum a,
idem quod figuræ centrum.
ALITER.
Sit circulus, uel ellipſis a b c d,
cuius diameter d b, &
centrum e: ducaturq; per e recta li
nea a c, ſecans ipſam d b adrectos angulos.
erunt a d c,
a b c circuli, uel ellipſis dimidiæ portiones.
Itaque quo-
niam por
tiõis a d c
cétrū gra-
uitatis eſt
in diame-
tro d e:
&
portionis
a b c cen-
trum eſt ĩ
ipſa e b:
to
tius circu
li, uel ellipſis grauitatis centrum eritin diametro d b.
Sit autem portionis a d c cẽtrum grauitatis f: &