Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
[Figure 141]
[Figure 142]
[Figure 143]
[Figure 144]
[Figure 145]
[Figure 146]
[Figure 147]
[Figure 148]
[Figure 149]
[Figure 150]
< >
page |< < (23) of 213 > >|
15723DE CENTRO GRAVIT. SOLID. eſtſolidi g m altitudo ad o e altitudinem ſolidi m c, uel quã
axis k q ad q l axem.
Si uero axis k l non ſit perpendicularis
ad planum baſis;
ducatur a puncto k ad idem planum per
pendicularis k r, occurrẽs plano m n o p in s.
ſimiliter de-
mõſtrabimus ſolidum g m ad ſoli m c ita eſſe, ut axis k q
ad axem q l.
Sed ut K q ad q l, ita k s altitudo ad altitudi-
nem s r, nam lineæ K l, K r à planis æquidiſtantibus in eaſ-
1117. unde-
cimi
dem proportiones ſecantur.
ergo ſolidum g m ad ſolidum
m c eandẽ proportionem habet, quam altitudo ad altitu
dinẽ, uel quam axis ad axem.
quod demõſtrare oportebat.
THEOREMA XV. PROPOSITIO XIX.
Solida parallelepipedain eadem baſi, uel in
æqualibus baſibus conſtituta eam inter ſe propor
tionem habent, quam altitudines:
& ſi axes ipſo-
rum cum baſibus æquales angulos contineant,
eam quoque, quam axes proportionem habebũt.
Sint ſolida parallelepipeda in eadẽ baſi cõſtituta a b c d,
a b e f:
& ſit ſolidi a b c d altitudo minor: producatur au-
tem planum c d adeo, utſolidum a b e f ſecet;
cuius ſectio
ſit g h.
erũſoli
111[Figure 111]2229. unde-
cimi
da a b c d, a b g h
in eadem baſi,
&
æquali altitu
dine inter ſe æ-
qualia.
Quoniã
igitur ſolidum
a b e f ſecatur
plano baſibus
æquidiſtãte, erit
ſolidum g h e f
3318. huius adipſum a b g

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index