Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
< >
page |< < (44) of 213 > >|
9944DE IIS QVAE VEH. IN AQVA. gura: & alia eadem diſponantur demonſtrabimus rurſum
n t æqualem eſſe ipſi u i:
& portiones a u q, a n z inter
ſe ſe æquales.
65[Figure 65] Itaque quoniã
ĩ portionibus
æqualibus, &
ſi
milibus a u q l,
a n z g ductæ
sũt a q, a z, por
tiones æqua-
les auferentes;
cum diametris
portionum æ-
quales angu-
los cõtinebũt.

ergo triangulo
rum n l s, u ω c
anguli, qui cõ-
ſiſtũt ad l ω pũ-
cta, æquales ſunt:
& b s recta linea æqualis ipſi b c: ſ r ipſi cr,
n χ ipſi u h:
& χ tipſi h i. quòd cum u y dupla ſit ipſius y i,
erit n χ maior, quàm dupla χ t.
Sit igitur n m ipſius m t du
pla.
Rurſus ex his manifeſtum eſt, non manere ipſam por-
tionem;
ſed inclinari ex parte a: ponebatur autem portio
humidi ſuperficiem in uno puncto contingere.
ergo ne-
ceſſe eſt, ut eius baſis in humidum magis demergatur.
DEMONSTRATIO QVINT AE PARTIS.
HABEAT denique portio ad humidum in grauitate
minorem proportionem, quàm quadratum f p ad quadra-
tum b d:
& quam proportionem habet portio ad humidũ
in grauitate, eandem quadratum, quod fit à linea ψ habeat
ad quadratum b d.
erit χ minor ipſa p f. Rurſus

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index