Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
< >
page |< < (15) of 213 > >|
14115DE CENTRO GRAVIT. SOLID. bere proportionem, quam ſpacium g h ad dictã
figuram, hoc modo demonſtrabimus.
Intelligatur circulus, uel ellipſis x æqualis figuræ rectili-
neæ in g h ſpacio deſcriptæ:
& ab x conſtituatur conus, uel
95[Figure 95] coni portio, altitudinẽ habens eandẽ, quã cylindrus uel cy
lindri portio c e.
Sit deinde rectilinea figura, in quay eade,
quæ in ſpacio g h deſcripta eſt:
& ab hac pyramis æquealta
conſtituatur.
Dico conũ uel coni portionẽ x pyramidiy æ-
qualẽ eſſe.
niſi enim ſit æqualis, uel maior, uel minor erit.
Sit primum maior, et exuperet ſolido z. Itaque in circu
lo, uel ellipſi x deſcribatur figura rectilinea;
& in ea pyra-
mis eandem, quam conus, uel coni portio altitudinem ha-
bens, ita ut portiones relictæ minores ſint ſolido z, quem-
admodum docetur in duodecimo libro elementorum pro
poſitione undecima.
erit pyramis x adhuc pyramide y ma
ior.
& quoniam piramides æque altæ inter ſe ſunt, ſicuti ba
116. duode-
cimi.
ſes;
pyramis x ad piramidem y eandem proportionem ha-
bet, quàm figura rectilinea x ad figuram y.
Sed ſigura

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index