Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
< >
page |< < of 213 > >|
76ARCHIMEDIS
Ex quibus perſpicuum eſt lineas omnes ſic ductas ab
ipſis ſectionibus in eandem proportionem ſecari.
eſt enim
diuidendo, conuertendoque cm ad mb, &
LEMMA III.
Sed & illud constare potest; lineas, quæ in portioni-
bus eiuſmodi ſimilibus ita ducuntur, ut cú baſibus æqua-
les angulos contineant, ab ipſis ſimiles quoque portiones
abſcindere:
hoc eſt, ut in propoſita figura, portiones h b c,
m f c, quas lineæ c h, c m abſcindunt, etiam inter ſe
ſimiles eſſe.
D_ividantvr_ enim ch, cm bifariam in punctis p q: & per
ipſa ducantur lineæ r p s, t q u diametris æquidiſtantes.
erit portio-
nis b s c diameter p s, &
portionis m u c diameter q u. Itaque fiat
quæ ſit s x:
u y.
iam exĳs
quæ demóſtra
uimus in com-
mentarĳs in
quartam pro-
poſitioné.
Ar-
chrmedis de co
noidibus, &

ſphæroidibus,