Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[91. Figure]
[92. Figure]
[93. Figure]
[94. Figure]
[95. Figure]
[96. Figure]
[97. Figure]
[98. Figure]
[99. Figure]
[100. Figure]
[101. Figure]
[102. Figure]
[103. Figure]
[104. Figure]
[105. Figure]
[106. Figure]
[107. Figure]
[108. Figure]
[109. Figure]
[110. Figure]
[111. Figure]
[112. Figure]
[113. Figure]
[114. Figure]
[115. Figure]
[116. Figure]
[117. Figure]
[118. Figure]
[119. Figure]
[120. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
do in reliquis figuris æquilateris, & æquiangulis, quæ in cir-
culo deſcribuntur, probabimus cẽtrum grauitatis earum,
&
centrum circuli idem eſſe. quod quidem demonſtrare
oportebat.
Ex quibus apparet cuiuslibet figuræ rectilineæ
in circulo plane deſcriptæ centrum grauitatis idẽ
eſſe, quod &
circuli centrum.
Figuram in circulo plane deſcriptam appella-
γνωρ@ μω@mus, cuiuſmodi eſt ea, quæ in duodecimo elemen
torum libro, propoſitione ſecunda deſcribitur.
ex æqualibus enim lateribus, & angulis conſtare
perſpicuum eſt.

THEOREMA II. PROPOSITIO II.

Omnis figuræ rectilineæ in ellipſi plane deſcri-
ptæ centrum grauitatis eſt idem, quod ellipſis
centrum.
Quo modo figura rectilinea in ellipſi plane deſcribatur,
docuimus in commentarijs in quintam propoſitionem li-
bri Archimedis de conoidibus, &
ſphæroidibus.
Sit ellipſis a b c d, cuius maior axis a c, minor b d: iun-
ganturq́;
a b, b c, c d, d a: & bifariam diuidantur in pun-
ctis e f g h.
à centro autem, quod ſit k ductæ lineæ k e, k f,
k g, k h uſque ad ſectionem in puncta l m n o protrahan-
tur:
& iungantur l m, m n, n o, o l, ita ut a c ſecet li-
neas l o, m n, in z φ punctis, &
b d ſecet l m, o n in χ ψ.
erunt l k, k n linea una, itemq́ue linea unaipſæ m k, k o:
&
lineæ b a, c d æquidiſtabunt lineæ m o: & b c, a d ipſi
l n.
rurſus l o, m n axi b d æquidiſtabunt: & l m,

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index