Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
< >
page |< < (8) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div27" type="section" level="1" n="18">
          <p style="it">
            <s xml:id="echoid-s475" xml:space="preserve">
              <pb o="8" file="0027" n="27" rhead="DE IIS QVAE VEH. IN AQVA."/>
            neas; </s>
            <s xml:id="echoid-s476" xml:space="preserve">neutra alteri obſistit, quo minus moueatur; </s>
            <s xml:id="echoid-s477" xml:space="preserve">ídq; </s>
            <s xml:id="echoid-s478" xml:space="preserve">continenter
              <lb/>
            fiat, dum portio in rectum fuerit conſtituta: </s>
            <s xml:id="echoid-s479" xml:space="preserve">tunc enim utrarumque
              <lb/>
            magnitudinum grauitatis centra in unam, eandémq; </s>
            <s xml:id="echoid-s480" xml:space="preserve">perpendicula-
              <lb/>
            rum conueniunt, uidelicet in axem portionis: </s>
            <s xml:id="echoid-s481" xml:space="preserve">& </s>
            <s xml:id="echoid-s482" xml:space="preserve">quanto conatu, im
              <lb/>
            petùue ea, quæ in humido eſt ſurſum, tanto quæ extra humidum de-
              <lb/>
            orſum per eandem lineam contendit. </s>
            <s xml:id="echoid-s483" xml:space="preserve">quare cum altera alteram non
              <lb/>
            ſuperet, non amplius mouebitur portio; </s>
            <s xml:id="echoid-s484" xml:space="preserve">ſed conſiſtet, manebítq; </s>
            <s xml:id="echoid-s485" xml:space="preserve">in
              <lb/>
            eodem ſemper ſitu; </s>
            <s xml:id="echoid-s486" xml:space="preserve">niſi forte aliqua cauſſa extrinſecus acceſſerit.</s>
            <s xml:id="echoid-s487" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div34" type="section" level="1" n="19">
          <head xml:id="echoid-head22" xml:space="preserve">PROPOSITIO IX.</head>
          <p>
            <s xml:id="echoid-s488" xml:space="preserve">
              <emph style="sc">Qvòd</emph>
            ſi figura humido leuior in humidum
              <lb/>
            demittatur, ita ut baſis tota ſit in humido; </s>
            <s xml:id="echoid-s489" xml:space="preserve">inſide
              <lb/>
            bit recta, ita ut axis ipſius ſecundum perpendicu
              <lb/>
            larem conſtituatur.</s>
            <s xml:id="echoid-s490" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s491" xml:space="preserve">INTELLIGATVR enim magnitudo aliqua, qua-
              <lb/>
            lis dicta eſt, in humidum demiſſa: </s>
            <s xml:id="echoid-s492" xml:space="preserve">& </s>
            <s xml:id="echoid-s493" xml:space="preserve">intelligatur planum
              <lb/>
            per axem portionis, & </s>
            <s xml:id="echoid-s494" xml:space="preserve">per centrum terræ ductum: </s>
            <s xml:id="echoid-s495" xml:space="preserve">ſitq; </s>
            <s xml:id="echoid-s496" xml:space="preserve">ſu
              <lb/>
            perficiei quidem humidi ſectio a b c d circunferentia; </s>
            <s xml:id="echoid-s497" xml:space="preserve">figu
              <lb/>
            ræ autem ſectio circun ferentia e f h: </s>
            <s xml:id="echoid-s498" xml:space="preserve">& </s>
            <s xml:id="echoid-s499" xml:space="preserve">ſit e h recta linea:
              <lb/>
            </s>
            <s xml:id="echoid-s500" xml:space="preserve">& </s>
            <s xml:id="echoid-s501" xml:space="preserve">axis portionis f t. </s>
            <s xml:id="echoid-s502" xml:space="preserve">Si igitur fieri poteſt, non ſit f t ſecun
              <lb/>
            dum perpendicularem.</s>
            <s xml:id="echoid-s503" xml:space="preserve"/>
          </p>
          <figure number="15">
            <image file="0027-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0027-01"/>
          </figure>
          <p>
            <s xml:id="echoid-s504" xml:space="preserve">Demonſtrandum eſt non
              <lb/>
            manerefiguram; </s>
            <s xml:id="echoid-s505" xml:space="preserve">ſed in re
              <lb/>
            ctum reſtitui. </s>
            <s xml:id="echoid-s506" xml:space="preserve">eſt autem
              <lb/>
            centrum ſphæræ in linea
              <lb/>
            f t: </s>
            <s xml:id="echoid-s507" xml:space="preserve">rurſus enim ſit figu-
              <lb/>
            ra primo maior dimidia
              <lb/>
            ſphæra: </s>
            <s xml:id="echoid-s508" xml:space="preserve">& </s>
            <s xml:id="echoid-s509" xml:space="preserve">ſphæræ centrũ
              <lb/>
            in dimidia ſphæra ſit pun-
              <lb/>
            ctum t; </s>
            <s xml:id="echoid-s510" xml:space="preserve">in minore portione p; </s>
            <s xml:id="echoid-s511" xml:space="preserve">in maiori uero ſit _k_: </s>
            <s xml:id="echoid-s512" xml:space="preserve">& </s>
            <s xml:id="echoid-s513" xml:space="preserve">per
              <lb/>
            _k_, & </s>
            <s xml:id="echoid-s514" xml:space="preserve">terræ centrum l ducatur _k_ l. </s>
            <s xml:id="echoid-s515" xml:space="preserve">Itaque figura quæ eſt
              <lb/>
              <note position="right" xlink:label="note-0027-01" xlink:href="note-0027-01a" xml:space="preserve">A</note>
            </s>
          </p>
        </div>
      </text>
    </echo>