Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div65" type="section" level="1" n="27">
          <p>
            <s xml:id="echoid-s878" xml:space="preserve">
              <pb file="0042" n="42" rhead="ARCHIMEDIS"/>
            & </s>
            <s xml:id="echoid-s879" xml:space="preserve">ſectionis diameter no: </s>
            <s xml:id="echoid-s880" xml:space="preserve">ſuperſiciei autem humidi ſectio
              <lb/>
            ſit is. </s>
            <s xml:id="echoid-s881" xml:space="preserve">Quoniam igitur axis non eſt ſecundum perpendicu
              <lb/>
            larem; </s>
            <s xml:id="echoid-s882" xml:space="preserve">ipſa no cum is non faciet angulos æquales. </s>
            <s xml:id="echoid-s883" xml:space="preserve">Du-
              <lb/>
            catur k ω contingens ſectionem apol in p; </s>
            <s xml:id="echoid-s884" xml:space="preserve">atque ipſi is
              <lb/>
            æquidiſtans: </s>
            <s xml:id="echoid-s885" xml:space="preserve">per p autem ducatur p f æquidiſtās ipſi n o:
              <lb/>
            </s>
            <s xml:id="echoid-s886" xml:space="preserve">& </s>
            <s xml:id="echoid-s887" xml:space="preserve">ſumantur grauitatum centra: </s>
            <s xml:id="echoid-s888" xml:space="preserve">ſitq; </s>
            <s xml:id="echoid-s889" xml:space="preserve">ipſius a p o l ſolidi
              <lb/>
            centrum r; </s>
            <s xml:id="echoid-s890" xml:space="preserve">eius quod extra humidum ſit b: </s>
            <s xml:id="echoid-s891" xml:space="preserve">& </s>
            <s xml:id="echoid-s892" xml:space="preserve">iuncta br
              <lb/>
            producatur adg,
              <lb/>
              <figure xlink:label="fig-0042-01" xlink:href="fig-0042-01a" number="25">
                <image file="0042-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0042-01"/>
              </figure>
            quodſit centrum
              <lb/>
            grauitatis ſolidi ĩ
              <lb/>
            humido demerſi:
              <lb/>
            </s>
            <s xml:id="echoid-s893" xml:space="preserve">ſumatur præterea
              <lb/>
            r h æ qualis ei, quæ
              <lb/>
            uſque ad axẽ: </s>
            <s xml:id="echoid-s894" xml:space="preserve">o h
              <lb/>
            autem dupla ipſi-
              <lb/>
            us h m; </s>
            <s xml:id="echoid-s895" xml:space="preserve">& </s>
            <s xml:id="echoid-s896" xml:space="preserve">alia fiãt,
              <lb/>
            ſicuti ſuperius di-
              <lb/>
            ctum eſt. </s>
            <s xml:id="echoid-s897" xml:space="preserve">Itaque
              <lb/>
            cum portio ad hu
              <lb/>
            midum in grauita
              <lb/>
            te non maiorem
              <lb/>
            proportionem ha
              <lb/>
            bere ponatur, quã
              <lb/>
            exceſſus, quo quadratum n o excedit quadratum m o, ad
              <lb/>
            ipſum n o quadratum: </s>
            <s xml:id="echoid-s898" xml:space="preserve">& </s>
            <s xml:id="echoid-s899" xml:space="preserve">quam proportionem in grauita
              <lb/>
            te portio habet ad humidum æqualis molis, eandem ha-
              <lb/>
            beat magnitudo portionis demerſa ad totam portio-
              <lb/>
            nem, quod demonſtratum eſt in prima propoſitione: </s>
            <s xml:id="echoid-s900" xml:space="preserve">
              <lb/>
            magnitudo demerſa non maiorem proportionem ha-
              <lb/>
              <note position="left" xlink:label="note-0042-01" xlink:href="note-0042-01a" xml:space="preserve">11. quin-
                <lb/>
              ti.</note>
            bebit ad totam portionem, quàm ſit dicta illa propor-
              <lb/>
            portio. </s>
            <s xml:id="echoid-s901" xml:space="preserve">quare non maiorem proportionem habet tota
              <lb/>
              <note position="left" xlink:label="note-0042-02" xlink:href="note-0042-02a" xml:space="preserve">A</note>
            portio ad eam quæ eſt extra humidum, quàm quadratum
              <lb/>
            no ad quadratum m o. </s>
            <s xml:id="echoid-s902" xml:space="preserve">habet autem tota portio ad eam,
              <lb/>
              <note position="left" xlink:label="note-0042-03" xlink:href="note-0042-03a" xml:space="preserve">B</note>
            quæ extra humidum proportionem eandem, quam </s>
          </p>
        </div>
      </text>
    </echo>