Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
< >
page |< < (24) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div91" type="section" level="1" n="36">
          <p>
            <s xml:id="echoid-s1369" xml:space="preserve">
              <pb o="24" file="0059" n="59" rhead="DE IIS QVAE VEH. IN AQVA."/>
            humidum ſecundum perpendicularem, quæ per z ad hu-
              <lb/>
            midi ſuperficiem ducta fuerit: </s>
            <s xml:id="echoid-s1370" xml:space="preserve">quæ autem eſt extra humi-
              <lb/>
            dum ſecundum eam, quæ per gintra humidum feretur. </s>
            <s xml:id="echoid-s1371" xml:space="preserve">nõ
              <lb/>
            ergo manebit portio ſic inclinata, ut ponitur: </s>
            <s xml:id="echoid-s1372" xml:space="preserve">ſed neque re
              <lb/>
            ſtituecur recta: </s>
            <s xml:id="echoid-s1373" xml:space="preserve">quoniam perpendicularium per z g ducta
              <lb/>
            rum, quæ quidem per z ducitur ad eas partes cadit, in qui
              <lb/>
            bus eſt l; </s>
            <s xml:id="echoid-s1374" xml:space="preserve">& </s>
            <s xml:id="echoid-s1375" xml:space="preserve">quæ per g ad eas, in quibus eſt a. </s>
            <s xml:id="echoid-s1376" xml:space="preserve">quare ſequi-
              <lb/>
            tur centrum z ſurſum ferri: </s>
            <s xml:id="echoid-s1377" xml:space="preserve">& </s>
            <s xml:id="echoid-s1378" xml:space="preserve">g deorſum. </s>
            <s xml:id="echoid-s1379" xml:space="preserve">ergo partes to
              <lb/>
            tius ſolidi, quæ ſunt ad a deorſum, quæ uero ad l ſurſum
              <lb/>
            ferentur. </s>
            <s xml:id="echoid-s1380" xml:space="preserve">Rurſus alia eadem ponantur: </s>
            <s xml:id="echoid-s1381" xml:space="preserve">axis autem
              <lb/>
            portionis cum ſuperficie humidi angulum faciat minorẽ
              <lb/>
            eo, qui eſt ad b. </s>
            <s xml:id="echoid-s1382" xml:space="preserve">minorem igitur proportionem habet qua
              <lb/>
              <note position="right" xlink:label="note-0059-01" xlink:href="note-0059-01a" xml:space="preserve">O</note>
            dratum p i ad quadratum i y, quàm quadratum e ψ ad
              <lb/>
            ψ b quadratum: </s>
            <s xml:id="echoid-s1383" xml:space="preserve">quare k r ad i y minorem proportionẽ
              <lb/>
            habet, quàm dimidium k r ad ψ b: </s>
            <s xml:id="echoid-s1384" xml:space="preserve">& </s>
            <s xml:id="echoid-s1385" xml:space="preserve">propterea i y maior
              <lb/>
            eſt, quam dupla ψ b. </s>
            <s xml:id="echoid-s1386" xml:space="preserve">eſt autem ipſius o i dupla. </s>
            <s xml:id="echoid-s1387" xml:space="preserve">ergo o i
              <lb/>
            ipſa ψ b maior e-
              <lb/>
              <figure xlink:label="fig-0059-01" xlink:href="fig-0059-01a" number="38">
                <image file="0059-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0059-01"/>
              </figure>
            rit. </s>
            <s xml:id="echoid-s1388" xml:space="preserve">ſed tota o ω eſt
              <lb/>
            æqualis ipſi r b:
              <lb/>
            </s>
            <s xml:id="echoid-s1389" xml:space="preserve">& </s>
            <s xml:id="echoid-s1390" xml:space="preserve">reliqua ω i mi-
              <lb/>
            nor quàm ψ r. </s>
            <s xml:id="echoid-s1391" xml:space="preserve">qua
              <lb/>
            re & </s>
            <s xml:id="echoid-s1392" xml:space="preserve">p h minor e-
              <lb/>
            rit, quàm f. </s>
            <s xml:id="echoid-s1393" xml:space="preserve">Quòd
              <lb/>
            cum m p ipſi f q
              <lb/>
            ſit æqualis, cõſtat
              <lb/>
            p m maiorẽ eſſe,
              <lb/>
            quàm ſeſquialterã
              <lb/>
            ipſius p h: </s>
            <s xml:id="echoid-s1394" xml:space="preserve">& </s>
            <s xml:id="echoid-s1395" xml:space="preserve">p h
              <lb/>
            minorem, quam
              <lb/>
            duplam h m. </s>
            <s xml:id="echoid-s1396" xml:space="preserve">Sit
              <lb/>
            p z ipſius z m du
              <lb/>
            pla. </s>
            <s xml:id="echoid-s1397" xml:space="preserve">Rurſus to-
              <lb/>
            tius quidem ſolidi centrum grauitatis erit pũctum t; </s>
            <s xml:id="echoid-s1398" xml:space="preserve">eius
              <lb/>
            uero partis, quæ intra humidum z: </s>
            <s xml:id="echoid-s1399" xml:space="preserve">& </s>
            <s xml:id="echoid-s1400" xml:space="preserve">iuncta z t </s>
          </p>
        </div>
      </text>
    </echo>