Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div94" type="section" level="1" n="37">
          <p style="it">
            <s xml:id="echoid-s1470" xml:space="preserve">
              <pb file="0062" n="62" rhead="ARCHIMEDIS"/>
            quadratum e ψ ad quadr. </s>
            <s xml:id="echoid-s1471" xml:space="preserve">itum ψ b.</s>
            <s xml:id="echoid-s1472" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s1473" xml:space="preserve">_Sed quam proportionem habet qua-_
              <lb/>
              <figure xlink:label="fig-0062-01" xlink:href="fig-0062-01a" number="40">
                <image file="0062-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0062-01"/>
              </figure>
              <note position="left" xlink:label="note-0062-01" xlink:href="note-0062-01a" xml:space="preserve">F</note>
            _dratum p i ad quadratum i y, eandem li_
              <lb/>
            _nea k r habet ad lineam i y.</s>
            <s xml:id="echoid-s1474" xml:space="preserve">]_ Est enim ex
              <lb/>
            undecima primi conicorum quadratum p i æqua
              <lb/>
            le rectangulo contento linea i o, & </s>
            <s xml:id="echoid-s1475" xml:space="preserve">ea, iuxta quam poſſunt quæ à
              <lb/>
            ſectione ad diametrum ducuntur, uidelicet duplaipſius k r. </s>
            <s xml:id="echoid-s1476" xml:space="preserve">atque
              <lb/>
            est i y dupla i o, extrigeſimatertia eiuſdem: </s>
            <s xml:id="echoid-s1477" xml:space="preserve">quare ex decimaſext a
              <lb/>
            ſexti elementorum, rectangulum, quod fit ex k r, & </s>
            <s xml:id="echoid-s1478" xml:space="preserve">i y æ quale eſt
              <lb/>
            rectangulo contento linea i o & </s>
            <s xml:id="echoid-s1479" xml:space="preserve">ea, iuxta quam poſſunt: </s>
            <s xml:id="echoid-s1480" xml:space="preserve">hoc eſt qua
              <lb/>
            drato p i. </s>
            <s xml:id="echoid-s1481" xml:space="preserve">Sed ut rectangulnm ex k r, & </s>
            <s xml:id="echoid-s1482" xml:space="preserve">i y ad quadratum i y, ita
              <lb/>
              <note position="left" xlink:label="note-0062-02" xlink:href="note-0062-02a" xml:space="preserve">lem. 22.
                <lb/>
              decimi.</note>
            linea κ r ad ipſam i y. </s>
            <s xml:id="echoid-s1483" xml:space="preserve">ergo linea κ r ad i y eandem proportionem
              <lb/>
            habebit, quam rectangulum ex κ r & </s>
            <s xml:id="echoid-s1484" xml:space="preserve">i y, hoc eſt quadratum p i ad
              <lb/>
            quadratum i y.</s>
            <s xml:id="echoid-s1485" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s1486" xml:space="preserve">Et quam proportionem habet quadratũ e ψ ad quadra
              <lb/>
              <note position="left" xlink:label="note-0062-03" xlink:href="note-0062-03a" xml:space="preserve">G</note>
            tum ψ b, eandem habet dimidium lineæ K r ad lineã ψ b.</s>
            <s xml:id="echoid-s1487" xml:space="preserve">]</s>
          </p>
          <p style="it">
            <s xml:id="echoid-s1488" xml:space="preserve">Nam cum quadratum e ψ poſitum ſit æquale dimidio rectanguli
              <lb/>
            contenti linea κ r, & </s>
            <s xml:id="echoid-s1489" xml:space="preserve">ψ b; </s>
            <s xml:id="echoid-s1490" xml:space="preserve">hoc est ei, quod dimidia ipſius κ r
              <lb/>
            & </s>
            <s xml:id="echoid-s1491" xml:space="preserve">linea ψ b continetur: </s>
            <s xml:id="echoid-s1492" xml:space="preserve">& </s>
            <s xml:id="echoid-s1493" xml:space="preserve">ut rectangulum ex dimidia κ r, & </s>
            <s xml:id="echoid-s1494" xml:space="preserve">ψ b
              <lb/>
              <note position="left" xlink:label="note-0062-04" xlink:href="note-0062-04a" xml:space="preserve">lem. 22.
                <lb/>
              decimi</note>
            ad quadratum ψ b, ita ſit dimidia κ r ad line am ψ b: </s>
            <s xml:id="echoid-s1495" xml:space="preserve">habebit dimi-
              <lb/>
            dia κ r ad ψ b proportionem eandem, quam quadratum e ψ ad qua-
              <lb/>
            dratum ψ b.</s>
            <s xml:id="echoid-s1496" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s1497" xml:space="preserve">_Etidcirco i y minor eſt, quàm dupla ψ b.</s>
            <s xml:id="echoid-s1498" xml:space="preserve">]_ Quam enim pro
              <lb/>
              <note position="left" xlink:label="note-0062-05" xlink:href="note-0062-05a" xml:space="preserve">H</note>
            portionem habet dimidium κ r ad ψ b, habeat κ r ad aliam lineam.
              <lb/>
            </s>
            <s xml:id="echoid-s1499" xml:space="preserve">erit ea maior, quàm i y; </s>
            <s xml:id="echoid-s1500" xml:space="preserve">nempe ad quam κ r minorem proportioné
              <lb/>
              <note position="left" xlink:label="note-0062-06" xlink:href="note-0062-06a" xml:space="preserve">10. quinti.</note>
            habet: </s>
            <s xml:id="echoid-s1501" xml:space="preserve">at que erit dupla ψ b. </s>
            <s xml:id="echoid-s1502" xml:space="preserve">ergo i y minor eſt, quam dupla ψ b.</s>
            <s xml:id="echoid-s1503" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s1504" xml:space="preserve">_Et i ω maior, quam ψ r.</s>
            <s xml:id="echoid-s1505" xml:space="preserve">]_ Cum enim o ω poſita ſit æ qualis b r
              <lb/>
              <note position="left" xlink:label="note-0062-07" xlink:href="note-0062-07a" xml:space="preserve">K</note>
            ſi ex b r dematur ψ b, & </s>
            <s xml:id="echoid-s1506" xml:space="preserve">ex o ω dematur o i, quæ minor eſt ψ b: </s>
            <s xml:id="echoid-s1507" xml:space="preserve">erit
              <lb/>
            reliqua i ω maior reliqua ψ r.</s>
            <s xml:id="echoid-s1508" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s1509" xml:space="preserve">_Atqueideo f q æqualis eſt ipſi p m.</s>
            <s xml:id="echoid-s1510" xml:space="preserve">]_ Ex decimaquarta
              <lb/>
              <note position="left" xlink:label="note-0062-08" xlink:href="note-0062-08a" xml:space="preserve">L</note>
            quinti elementorum, nam linea o n ipſi b d eſt æ qualis.</s>
            <s xml:id="echoid-s1511" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s1512" xml:space="preserve">_Demonſtrata eſt autem p h maior, quàm f.</s>
            <s xml:id="echoid-s1513" xml:space="preserve">]_ Etenim de-
              <lb/>
              <note position="left" xlink:label="note-0062-09" xlink:href="note-0062-09a" xml:space="preserve">M</note>
            monstrata est i ω maior, quàm f; </s>
            <s xml:id="echoid-s1514" xml:space="preserve">atque est p h æqualis ipſi i ω.</s>
            <s xml:id="echoid-s1515" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s1516" xml:space="preserve">_Eodem modo demonſtrabitur t h perpendicularis ad_
              <lb/>
              <note position="left" xlink:label="note-0062-10" xlink:href="note-0062-10a" xml:space="preserve">N</note>
            </s>
          </p>
        </div>
      </text>
    </echo>