Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[131. Figure]
[132. Figure]
[133. Figure]
[134. Figure]
[135. Figure]
[136. Figure]
[137. Figure]
[138. Figure]
[139. Figure]
[140. Figure]
[141. Figure]
[142. Figure]
[143. Figure]
[144. Figure]
[145. Figure]
[146. Figure]
[147. Figure]
[148. Figure]
[149. Figure]
[150. Figure]
[151. Figure]
< >
page |< < (36) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="91">
          <p>
            <s xml:space="preserve">
              <pb o="36" file="0183" n="183" rhead="DE CENTRO GRAVIT. SOLID."/>
            grauitatis magnitudinis, quæ ex utriſque pyramidibus cõ
              <lb/>
            ſtat; </s>
            <s xml:space="preserve">hoc eſt ipſius fruſti. </s>
            <s xml:space="preserve">Sed fruſti centrum eſt etiam in a-
              <lb/>
            xe g h. </s>
            <s xml:space="preserve">ergo in puncto φ, in quo lineæ z u, g h conueniunt.
              <lb/>
            </s>
            <s xml:space="preserve">Itaque u φ ad φ z eam proportionem habet, quam pyramis
              <lb/>
              <anchor type="note" xlink:label="note-0183-01a" xlink:href="note-0183-01"/>
            b c f e d ad pyramidem a b c d. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">componendo u z ad z φ
              <lb/>
            eam habet, quam fruſtum ad pyramidem a b c d. </s>
            <s xml:space="preserve">Vtuero
              <lb/>
            u z ad z φ, ita o p ad p φ ob ſimilitudinem triangulorum,
              <lb/>
            u o φ, z p φ. </s>
            <s xml:space="preserve">quare o p ad p φ eſt ut fruſtum ad pyramidem
              <lb/>
            a b c d. </s>
            <s xml:space="preserve">ſed ita erat o p ad p q. </s>
            <s xml:space="preserve">æquales igitur ſunt p φ, p q: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
              <anchor type="note" xlink:label="note-0183-02a" xlink:href="note-0183-02"/>
            q φ unum atque idem punctum. </s>
            <s xml:space="preserve">ex quibus ſequitur lineam
              <lb/>
            z u ſecare o p in q: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">propterea pũctum q ipſius fruſti gra-
              <lb/>
            uitatis centrum eſſe.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0181-01" xlink:href="fig-0181-01a">
              <image file="0181-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0181-01"/>
            </figure>
            <note position="right" xlink:label="note-0181-01" xlink:href="note-0181-01a" xml:space="preserve">3. diffi. hu
              <lb/>
            ius.</note>
            <note position="right" xlink:label="note-0181-02" xlink:href="note-0181-02a" xml:space="preserve">Vltima e-
              <lb/>
            auſdẽ libri
              <lb/>
            Archime-
              <lb/>
            dis.</note>
            <figure xlink:label="fig-0182-01" xlink:href="fig-0182-01a">
              <image file="0182-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0182-01"/>
            </figure>
            <note position="left" xlink:label="note-0182-01" xlink:href="note-0182-01a" xml:space="preserve">2. ſexti.</note>
            <note position="right" xlink:label="note-0183-01" xlink:href="note-0183-01a" xml:space="preserve">8. prim I
              <lb/>
            libri Ar-
              <lb/>
            chimedis
              <lb/>
            de cẽtro
              <lb/>
            grauita-
              <lb/>
            tis plano
              <lb/>
            runi</note>
            <note position="right" xlink:label="note-0183-02" xlink:href="note-0183-02a" xml:space="preserve">7. quinti.</note>
          </div>
          <p>
            <s xml:space="preserve">Sit fruſtum a g à pyramide, quæ quadrangularem baſim
              <lb/>
            habeat abſciſſum, cuius maior baſis a b c d, minor e f g h,
              <lb/>
            & </s>
            <s xml:space="preserve">axis k l. </s>
            <s xml:space="preserve">diuidatur autem primũ _k_ l, ita ut quam propor-
              <lb/>
            tionem habet duplum lateris a b unà cum latere e f ad du
              <lb/>
            plum lateris e f unà cum a b; </s>
            <s xml:space="preserve">habeat k m ad m l. </s>
            <s xml:space="preserve">deinde à
              <lb/>
            púcto m ad k ſumatur quarta pars ipſius m k, quæ ſit m n.
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">rurſus ab l ſumatur quarta pars totius axis l k, quæ ſit
              <lb/>
            l o. </s>
            <s xml:space="preserve">poſtremo fiat o n ad n p, ut fruſtum a g ad pyramidẽ,
              <lb/>
            cuius baſis ſit eadem, quæ fruſti, & </s>
            <s xml:space="preserve">altitudo æqualis. </s>
            <s xml:space="preserve">Dico
              <lb/>
            punctum p fruſti a g grauitatis centrum eſſe. </s>
            <s xml:space="preserve">ducantur
              <lb/>
            enim a c, e g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">intelligantur duo fruſta triangulares ba-
              <lb/>
            ſes habentia, quorum alterum l f ex baſibus a b c, e f g cõ-
              <lb/>
            ſtet; </s>
            <s xml:space="preserve">alterum l h ex baſibus a c d, e g h. </s>
            <s xml:space="preserve">Sitq; </s>
            <s xml:space="preserve">fruſti l f axis
              <lb/>
            q r; </s>
            <s xml:space="preserve">in quo grauitatis centrum s: </s>
            <s xml:space="preserve">fruſti uero l h axis t u, & </s>
            <s xml:space="preserve">
              <lb/>
            x grauitatis centrum: </s>
            <s xml:space="preserve">deinde iungantur u r, t q, x s. </s>
            <s xml:space="preserve">tranſi-
              <lb/>
            bit u r per l: </s>
            <s xml:space="preserve">quoniam l eſt centrum grauitatis quadran-
              <lb/>
            guli a b c d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">puncta r u grauitatis centra triangulorum
              <lb/>
            a b c, a c d; </s>
            <s xml:space="preserve">in quæ quadrangulum ipſum diuiditur. </s>
            <s xml:space="preserve">eadem
              <lb/>
            quoque ratione t q per punctum _k_ tranſibit. </s>
            <s xml:space="preserve">At uero pro
              <lb/>
            portiones, ex quibus fruſtorum grauitatis centra inquiri-
              <lb/>
            mus, eædem ſunt in toto ſruſto a g, & </s>
            <s xml:space="preserve">in fruſtis l f, l h. </s>
            <s xml:space="preserve">Sunt
              <lb/>
            enim per octauam huius quadrilatera a b c d, e f g h ſimilia:</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>