Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[131. Figure]
[132. Figure]
[133. Figure]
[134. Figure]
[135. Figure]
[136. Figure]
[137. Figure]
[138. Figure]
[139. Figure]
[140. Figure]
[141. Figure]
[142. Figure]
[143. Figure]
[144. Figure]
[145. Figure]
[146. Figure]
[147. Figure]
[148. Figure]
[149. Figure]
[150. Figure]
[151. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="93">
          <p>
            <s xml:space="preserve">
              <pb file="0194" n="194" rhead="FED. COMMANDINI"/>
            tionem cadet: </s>
            <s xml:space="preserve">Itaque cum à portione conoidis, cuius gra-
              <lb/>
            uitatis centrum e auferatur inſcripta figura, centrum ha-
              <lb/>
            bens p: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſit l e ad e p, ut figura inſcripta ad portiones reli
              <lb/>
            quas: </s>
            <s xml:space="preserve">erit magnitudinis, quæ ex reliquis portionibus con
              <lb/>
            ſtat, centrum grauitatis punctum l, extra portionem ca-
              <lb/>
            dens. </s>
            <s xml:space="preserve">quod fieri nequit. </s>
            <s xml:space="preserve">ergo linea p e minor eſt ip ſa g li-
              <lb/>
            nea propoſita.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <figure xlink:label="fig-0193-02" xlink:href="fig-0193-02a">
              <image file="0193-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0193-02"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Ex quibus perſpicuum eſt centrum grauitatis
              <lb/>
            figuræ inſcriptæ, & </s>
            <s xml:space="preserve">circumſcriptæ eo magis acce
              <lb/>
            dere ad portionis centrum, quo pluribus cylin-
              <lb/>
            dris, uel cylindri portionibus conſtet: </s>
            <s xml:space="preserve">fiatq́ figu
              <lb/>
            ra inſcripta maior, & </s>
            <s xml:space="preserve">circumſcripta minor. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            quanquam continenter ad portionis centrū pro-
              <lb/>
            pius admoueatur nunquam tamen ad ipſum per
              <lb/>
            ueniet. </s>
            <s xml:space="preserve">ſequeretur enim figuram inſcriptam, nó
              <lb/>
            ſolum portioni, ſed etiam circumſcriptæ figuræ
              <lb/>
            æqualem eſſe. </s>
            <s xml:space="preserve">quod eſt abſurdum.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="94">
          <head xml:space="preserve">THE OREMA XXIII. PROPOSITIO XXIX.</head>
          <p>
            <s xml:space="preserve">
              <emph style="sc">Cvivslibet</emph>
            portionis conoidis rectangu-
              <lb/>
            li axis à cẽtro grauitatis ita diuiditur, ut pars quæ
              <lb/>
            terminatur ad uerticem, reliquæ partis, quæ ad ba
              <lb/>
            ſim ſit dupla.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">SIT portio conoidis rectanguli uel abſciſſa plano ad
              <lb/>
            axem recto, uel non recto: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecta ipſa altero plano per axé
              <lb/>
            ſit ſuperſiciei ſe ctio a b c r ectanguli coni ſectio, uel parabo
              <lb/>
            le; </s>
            <s xml:space="preserve">plani abſcindentis portionem ſectio ſit recta linea a c:
              <lb/>
            </s>
            <s xml:space="preserve">axis portionis, & </s>
            <s xml:space="preserve">ſectionis diameter b d. </s>
            <s xml:space="preserve">Sumatur autem
              <lb/>
            in linea b d punctum e, ita ut b e ſit ipſius e d dupla. </s>
            <s xml:space="preserve">Dico</s>
          </p>
        </div>
      </text>
    </echo>