Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < (24) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="84">
          <p>
            <s xml:space="preserve">
              <pb o="24" file="0159" n="159" rhead="DE CENTRO GRAVIT. SOLID."/>
            los contineant. </s>
            <s xml:space="preserve">Dico ſolidum a b ad ſolidum a c eãdem ha
              <lb/>
            bere proportionem, quam axis d e ad axem e f. </s>
            <s xml:space="preserve">Sienim
              <lb/>
            axes in eadem recta linea fuerint conſtituti, hæc duo ſoli-
              <lb/>
            da, in unum, atque i @m ſolidum conuenient. </s>
            <s xml:space="preserve">quare ex
              <lb/>
            iis, quæ proxime tradita ſunt, habebit ſolidum a b ad ſo-
              <lb/>
            lidum a c eandem proportionem, quam axis d e ad e f
              <lb/>
            axem. </s>
            <s xml:space="preserve">Siuero axes non ſint in eadem recta linea, demittan
              <lb/>
            tur a punctis d, f perpendiculares ad baſis planum, d g, fh:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungantur e g, e h. </s>
            <s xml:space="preserve">Quoniam igitur axes cum baſibus
              <lb/>
            æquales angulos eontinent, erit d e g angulus æqualis an-
              <lb/>
            gulo f e h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſunt
              <lb/>
              <anchor type="figure" xlink:label="fig-0159-01a" xlink:href="fig-0159-01"/>
            anguli ad g h re-
              <lb/>
            cti, quare & </s>
            <s xml:space="preserve">re-
              <lb/>
            liquus e d g æqua
              <lb/>
            lis erit reliquo
              <lb/>
            e fh: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">triangu-
              <lb/>
            lum d e g triãgu-
              <lb/>
            lo f e h ſimile. </s>
            <s xml:space="preserve">er-
              <lb/>
            go g d ad d e eſt,
              <lb/>
            ut h f ad f e: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per
              <lb/>
            mutando g d ad
              <lb/>
            h f, ut d e ad e f.
              <lb/>
            </s>
            <s xml:space="preserve">Sed ſolidum a b
              <lb/>
            ad ſolidum a c
              <lb/>
            eandem propor-
              <lb/>
            tionem habet,
              <lb/>
            quam d g altitu-
              <lb/>
            do ad altitudinẽ
              <lb/>
            f h. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">ean-
              <lb/>
            dẽ habebit, quã
              <lb/>
            axis d e a l e f axẽ</s>
          </p>
          <div type="float" level="2" n="3">
            <figure xlink:label="fig-0159-01" xlink:href="fig-0159-01a">
              <image file="0159-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0159-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Poſtremo ſint
              <lb/>
            ſolida parallelepi
              <lb/>
            peda a b, c d in</s>
          </p>
        </div>
      </text>
    </echo>