Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
< >
page |< < (20) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div231" type="section" level="1" n="79">
          <p>
            <s xml:id="echoid-s3799" xml:space="preserve">
              <pb o="20" file="0151" n="151" rhead="DE CENTRO GRAVIT. SOLID."/>
            beat eam, quam χ τ ad τ f. </s>
            <s xml:id="echoid-s3800" xml:space="preserve">erit diuidendo ut χ f ad f τ, ita fi
              <lb/>
            gura ſolida inſcripta ad partem exceſſus, quæ eſtintra pyra
              <lb/>
            midem. </s>
            <s xml:id="echoid-s3801" xml:space="preserve">Cum ergo à pyramide, cuius grauitatis cẽtrum eſt
              <lb/>
            punctum f, ſolida figura inſcripta auferatur, cuius centrũ
              <lb/>
            τ: </s>
            <s xml:id="echoid-s3802" xml:space="preserve">reliquæ magnitudinis conſtantis ex parte exceſſus, quæ
              <lb/>
            eſtintra pyramidem, centrum grauitatis erit in linea τ f
              <lb/>
            producta, & </s>
            <s xml:id="echoid-s3803" xml:space="preserve">in puncto χ. </s>
            <s xml:id="echoid-s3804" xml:space="preserve">quod fieri non poteſt. </s>
            <s xml:id="echoid-s3805" xml:space="preserve">Sequitur
              <lb/>
            igitur, ut centrum grauitatis pyramidis in linea d e; </s>
            <s xml:id="echoid-s3806" xml:space="preserve">hoc
              <lb/>
            eſt in eius axe conſiſtat.</s>
            <s xml:id="echoid-s3807" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3808" xml:space="preserve">Sit conus, uel coni portio, cuius axis b d: </s>
            <s xml:id="echoid-s3809" xml:space="preserve">& </s>
            <s xml:id="echoid-s3810" xml:space="preserve">ſecetur plano
              <lb/>
            per axem, ut ſectio ſit triangulum a b c. </s>
            <s xml:id="echoid-s3811" xml:space="preserve">Dico centrum gra
              <lb/>
            uitatis ipſius eſſe in linea b d. </s>
            <s xml:id="echoid-s3812" xml:space="preserve">Sit enim, ſi fieri poteſt, centrũ
              <lb/>
              <figure xlink:label="fig-0151-01" xlink:href="fig-0151-01a" number="104">
                <image file="0151-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0151-01"/>
              </figure>
            e: </s>
            <s xml:id="echoid-s3813" xml:space="preserve">perq; </s>
            <s xml:id="echoid-s3814" xml:space="preserve">e ducatur e f axi æquidiſtans: </s>
            <s xml:id="echoid-s3815" xml:space="preserve">& </s>
            <s xml:id="echoid-s3816" xml:space="preserve">quam propor-
              <lb/>
            tionem habet c d ad d f, habeat conus, uel coni portio ad
              <lb/>
            ſolidum g. </s>
            <s xml:id="echoid-s3817" xml:space="preserve">inſcribatur ergo in cono, uel coni portione </s>
          </p>
        </div>
      </text>
    </echo>