Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
< >
page |< < (26) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="85">
          <p>
            <s xml:space="preserve">
              <pb o="26" file="0163" n="163" rhead="DE CENTRO GRAVIT. SOLID."/>
            matis a e axis g h; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">priſmatis a f axis l h. </s>
            <s xml:space="preserve">Dico priſma
              <lb/>
            a e ad priſma a f eam proportionem habere, quam g h ad
              <lb/>
            h l. </s>
            <s xml:space="preserve">ducantur à punctis g l perpendiculares ad baſis pla-
              <lb/>
            num g K, l m: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungantur k h,
              <lb/>
              <anchor type="figure" xlink:label="fig-0163-01a" xlink:href="fig-0163-01"/>
            h m. </s>
            <s xml:space="preserve">Itaque quoniam anguli g h
              <lb/>
            k, l h m ſunt æquales, ſimiliter ut
              <lb/>
            ſupra demonſtrabimus, triangu-
              <lb/>
            la g h K, l h m ſimilia eſſe; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ut g
              <lb/>
            K adlm, ita g h ad h l. </s>
            <s xml:space="preserve">habet au
              <lb/>
            tem priſma a e ad priſma a f ean
              <lb/>
            dem proportionem, quam altitu
              <lb/>
            do g k ad altitudinem l m, ſicuti
              <lb/>
            demonſtratum eſt. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">ean-
              <lb/>
            dem habebit, quam g h, ad h l. </s>
            <s xml:space="preserve">py
              <lb/>
            ramis igitur a b c d g ad pyrami-
              <lb/>
            dem a b c d l eandem proportio-
              <lb/>
            nem habebit, quam axis g h ad h l axem.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="3">
            <figure xlink:label="fig-0163-01" xlink:href="fig-0163-01a">
              <image file="0163-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-01"/>
            </figure>
          </div>
          <figure>
            <image file="0163-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-02"/>
          </figure>
          <p>
            <s xml:space="preserve">Denique ſint priſmata a e, k o in æqualibus baſibus a b
              <lb/>
            c d, k l m n conſtituta; </s>
            <s xml:space="preserve">quorum axes cum baſibus æquales
              <lb/>
            faciant angulos: </s>
            <s xml:space="preserve">ſitq; </s>
            <s xml:space="preserve">priſmatis a e axis f g, & </s>
            <s xml:space="preserve">altitudo f h:
              <lb/>
            </s>
            <s xml:space="preserve">priſmatis autem k o axis p q, & </s>
            <s xml:space="preserve">altitudo p r. </s>
            <s xml:space="preserve">Dico priſma
              <lb/>
            a e ad priſma k o ita eſſe, ut f g ad p q. </s>
            <s xml:space="preserve">iunctis enim g h,</s>
          </p>
        </div>
      </text>
    </echo>