Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="96">
          <p>
            <s xml:space="preserve">
              <pb file="0204" n="204" rhead="FED. COMMANDINI"/>
            ioris baſis ad quadratum minoris: </s>
            <s xml:space="preserve">centrum ſit in
              <lb/>
            eo axis puncto, quo ita diuiditur ut pars, quæ mi
              <lb/>
            norem baſim attingit ad alteram partem eandem
              <lb/>
            proportionem habeat, quam dempto quadrato
              <lb/>
            minoris baſis à duabus tertiis quadrati maioris,
              <lb/>
            habet id, quod reliquum eſt unà cum portione à
              <lb/>
            tertia quadrati maioris parte dempta, ad reliquà
              <lb/>
            eiuſdem tertiæ portionem.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">SIT fruſtum à portione rectanguli conoidis abſciſſum
              <lb/>
            a b c d, cuius maior baſis circulus, uel ellipſis circa diame-
              <lb/>
            trum b c, minor circa diametrum a d; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">axis e f. </s>
            <s xml:space="preserve">deſcriba-
              <lb/>
            tur autem portio conoidis, à quo illud abſciſſum eſt, & </s>
            <s xml:space="preserve">pla-
              <lb/>
              <anchor type="figure" xlink:label="fig-0204-01a" xlink:href="fig-0204-01"/>
            no per axem ducto ſecetur; </s>
            <s xml:space="preserve">ut ſuperficiei ſectio ſit parabo-
              <lb/>
            le b g c, cuius diameter, & </s>
            <s xml:space="preserve">axis portionis g f: </s>
            <s xml:space="preserve">deinde g f diui
              <lb/>
            datur in puncto h, ita ut g h ſit dupla h f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">rurſus g e in ean
              <lb/>
            dem proportionem diuidatur: </s>
            <s xml:space="preserve">ſitq; </s>
            <s xml:space="preserve">g _k_ ipſius k e dupla. </s>
            <s xml:space="preserve">Iã
              <lb/>
            ex iis, quæ proxime demonſtrauimus, conſtat centrum gra
              <lb/>
            uitatis portionis b g c eſſe h punctum: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">portionis a g c
              <lb/>
            punctum k. </s>
            <s xml:space="preserve">ſumpto igitur infra h punctol, ita ut k h ad h l</s>
          </p>
        </div>
      </text>
    </echo>