Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
< >
page |< < (37) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div268" type="section" level="1" n="91">
          <p>
            <s xml:id="echoid-s4629" xml:space="preserve">
              <pb o="37" file="0185" n="185" rhead="DE CENTRO GRAVIT. SOLID."/>
            ducta fuerìnt, ira ut in unum punctum y coeant, erunt triã
              <lb/>
            gala u y l, x y p, t y _k_ inter ſe ſimilia: </s>
            <s xml:id="echoid-s4630" xml:space="preserve">& </s>
            <s xml:id="echoid-s4631" xml:space="preserve">ſimilia etiam triangu
              <lb/>
            la l y r, p y s, _k_ y q. </s>
            <s xml:id="echoid-s4632" xml:space="preserve">quare ut in 19 huius, demonſtrabitur
              <lb/>
            x p, ad p s: </s>
            <s xml:id="echoid-s4633" xml:space="preserve">itemq; </s>
            <s xml:id="echoid-s4634" xml:space="preserve">t k ad _k_ q èandem habere proportionẽ,
              <lb/>
            quam u l ad l r. </s>
            <s xml:id="echoid-s4635" xml:space="preserve">Sed ut u l ad l r, ita eſt triangulum a b c ad
              <lb/>
            triangulum a c d: </s>
            <s xml:id="echoid-s4636" xml:space="preserve">& </s>
            <s xml:id="echoid-s4637" xml:space="preserve">ut t k ad K q, ita triangulum e f g ad
              <lb/>
            triangulum e g h. </s>
            <s xml:id="echoid-s4638" xml:space="preserve">Vt autem triangulum a b c ad triangu-
              <lb/>
            lum a c d, ita pyramis a b c y ad pyramidem a c d y. </s>
            <s xml:id="echoid-s4639" xml:space="preserve">& </s>
            <s xml:id="echoid-s4640" xml:space="preserve">ut
              <lb/>
            triangulum e f g ad triangulum e g h, ita pyramis e f g y
              <lb/>
            ad pyramidem e g h y; </s>
            <s xml:id="echoid-s4641" xml:space="preserve">ergo ut pyramis a b c y ad pyramidẽ
              <lb/>
            a c d y, ita pyramis e f g y ad pyramidem e g h y. </s>
            <s xml:id="echoid-s4642" xml:space="preserve">reliquum
              <lb/>
              <note position="right" xlink:label="note-0185-01" xlink:href="note-0185-01a" xml:space="preserve">19. quinti</note>
            igitur fruſtũ l f ad reliquum fruſtũ l h eſt ut pyramis a b c y
              <lb/>
            ad pyramidem a c d y, hoc eſt ut u l ad l r, & </s>
            <s xml:id="echoid-s4643" xml:space="preserve">ut x p ad p s.
              <lb/>
            </s>
            <s xml:id="echoid-s4644" xml:space="preserve">Quòd cum fruſti l f centrum grauitatis ſit s: </s>
            <s xml:id="echoid-s4645" xml:space="preserve">& </s>
            <s xml:id="echoid-s4646" xml:space="preserve">fruſti l h ſit
              <lb/>
            centrum x: </s>
            <s xml:id="echoid-s4647" xml:space="preserve">conſtat punctum p totius fruſti a g grauitatis
              <lb/>
              <note position="right" xlink:label="note-0185-02" xlink:href="note-0185-02a" xml:space="preserve">8. Archi-
                <lb/>
              medis.</note>
            eſſe centrum. </s>
            <s xml:id="echoid-s4648" xml:space="preserve">Eodem modo fiet demonſtratio etiam in
              <lb/>
            aliis pyramidibus.</s>
            <s xml:id="echoid-s4649" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4650" xml:space="preserve">Sit fruſtum a d à cono, uel coni portione abſciſſum, cu-
              <lb/>
            ius maior baſis circulus, uel ellipſis circa diametrum a b;
              <lb/>
            </s>
            <s xml:id="echoid-s4651" xml:space="preserve">minor circa diametrum c d: </s>
            <s xml:id="echoid-s4652" xml:space="preserve">& </s>
            <s xml:id="echoid-s4653" xml:space="preserve">axis e f. </s>
            <s xml:id="echoid-s4654" xml:space="preserve">diuidatur autẽ e f
              <lb/>
            in g, ita ut e g ad g f eandem proportionem habeat, quam
              <lb/>
            duplum diametri a b unà cum diametro c d ad duplum c d
              <lb/>
            unà cum a b. </s>
            <s xml:id="echoid-s4655" xml:space="preserve">Sitq; </s>
            <s xml:id="echoid-s4656" xml:space="preserve">g h quarta pars lineæ g e: </s>
            <s xml:id="echoid-s4657" xml:space="preserve">& </s>
            <s xml:id="echoid-s4658" xml:space="preserve">ſit ſ K item
              <lb/>
            quarta pars totius f e axis. </s>
            <s xml:id="echoid-s4659" xml:space="preserve">Rurfus quam proportionem
              <lb/>
            habet fruſtum a d ad conum, uel coni portionem, in eadẽ
              <lb/>
            baſi, & </s>
            <s xml:id="echoid-s4660" xml:space="preserve">æquali altitudine, habeat linea _k_ h ad h l. </s>
            <s xml:id="echoid-s4661" xml:space="preserve">Dico pun-
              <lb/>
            ctum l fruſti a d grauitatis centrum eſſe. </s>
            <s xml:id="echoid-s4662" xml:space="preserve">Si enim fieri po-
              <lb/>
            teſt, ſit m centrum: </s>
            <s xml:id="echoid-s4663" xml:space="preserve">producaturq; </s>
            <s xml:id="echoid-s4664" xml:space="preserve">l m extra fruſtum in n: </s>
            <s xml:id="echoid-s4665" xml:space="preserve">
              <lb/>
            & </s>
            <s xml:id="echoid-s4666" xml:space="preserve">ut n l ad l m, ita fiat circulus, uel ellipſis circa diametrũ
              <lb/>
            a b ad aliud ſpacium, in quo ſit o. </s>
            <s xml:id="echoid-s4667" xml:space="preserve">Itaque in circulo, uel
              <lb/>
            ellipſi circa diametrum a b rectilinea figura plane deſcri-
              <lb/>
            batur, ita ut quæ relinquuntur portiones ſint o ſpacio mi-
              <lb/>
            nores: </s>
            <s xml:id="echoid-s4668" xml:space="preserve">& </s>
            <s xml:id="echoid-s4669" xml:space="preserve">inteiligatur pyramis a p b, baſim habens rectili-
              <lb/>
            neam figuram in circulo, uel ellipſi a b deſcriptam: </s>
            <s xml:id="echoid-s4670" xml:space="preserve">à </s>
          </p>
        </div>
      </text>
    </echo>