Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
< >
page |< < of 213 > >|
<echo version="1.0RC">
<text xml:lang="la" type="free">
<div xml:id="echoid-div281" type="section" level="1" n="94">
<p>
<s xml:id="echoid-s4918" xml:space="preserve">
neam on ita di
<lb/>
</figure>
uiſerimus in p,
<lb/>
ut quã propor-
<lb/>
tionẽ habet cy-
<lb/>
<lb/>
cylindrum
<emph style="sc">K</emph>
l,
<lb/>
habeat linea o p
<lb/>
<s xml:id="echoid-s4919" xml:space="preserve">centrum
<lb/>
<lb/>
libri Ar-
<lb/>
chimedis</note>
grauitatis toti-
<lb/>
us figuræ circũ-
<lb/>
ſcriptæ erit pun
<lb/>
ctum p. </s>
<s xml:id="echoid-s4920" xml:space="preserve">Sed cy-
<lb/>
<lb/>
decimi.</note>
lindri, qui ſunt
<lb/>
æquali altitudi-
<lb/>
ne, candem in-
<lb/>
ter ſe ſe, quam
<lb/>
baſes propor-
<lb/>
tionem habent:
<lb/>
</s>
<s xml:id="echoid-s4921" xml:space="preserve">eſtq; </s>
<s xml:id="echoid-s4922" xml:space="preserve">ut linea d b
<lb/>
<lb/>
dratũ lineæ a d
<lb/>
<lb/>
ſius _K_ in, ex uige
<lb/>
ſima primi libri
<lb/>
conicorũ: </s>
<s xml:id="echoid-s4923" xml:space="preserve">& </s>
<s xml:id="echoid-s4924" xml:space="preserve">ita
<lb/>
<lb/>
<lb/>
g: </s>
<s xml:id="echoid-s4925" xml:space="preserve">hoc eſt circu-
<lb/>
<lb/>
cimi.</note>
lus circa diame
<lb/>