Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[11. Figure]
[12. Figure]
[13. Figure]
[14. Figure]
[15. Figure]
[16. Figure]
[17. Figure]
[18. Figure]
[19. Figure]
[20. Figure]
[21. Figure]
[22. Figure]
[23. Figure]
[24. Figure]
[25. Figure]
[26. Figure]
[27. Figure]
[28. Figure]
[29. Figure]
[30. Figure]
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000517">
                <pb pagenum="105" xlink:href="010/01/113.jpg"/>
                <arrow.to.target n="marg125"/>
                <lb/>
              deris DE impedire poſſumus, ſi eidem termino A ap­
                <lb/>
              plicaretur vis contraria G, quę traheret ſursùm
                <expan abbr="">eum</expan>
              ip­
                <lb/>
              ſum terminum A per eamdem rectam lineam
                <expan abbr="horizõ-ti">horizon­
                  <lb/>
                ti</expan>
              perpendicularem verſus ſupremum terminum G;
                <lb/>
              & ſiquidem vis, & facultas motiua G æqualis eſſet vi
                <lb/>
              ponderis DE, nulla ratio ſuadet quòd vna earum̨
                <lb/>
              virtutum reliquam ſuperet, aut vincat, proindequę
                <lb/>
              terminus libræ A non deſcendet versùs I, nec aſcen­
                <lb/>
              det versùs H, ſed omninò quieſcetin eodem ſitu. </s>
              <s id="s.000518">Si
                <lb/>
              verò
                <expan abbr="põdus">pondus</expan>
              DE ſuperaret vim
                <expan abbr="motiuã">motiuam</expan>
              G,
                <expan abbr="eiuſq;">eiuſque</expan>
              exceſ
                <lb/>
              ſus eſſet pondus E, tunc procùl dubio
                <expan abbr="põdus">pondus</expan>
              DE præ­
                <lb/>
              ualeret ſuperaretque vim motiuam G, & impetus,
                <lb/>
              atque vis, à qua prædicta libra flecteretur deorsùm̨
                <lb/>
              versùs I menſuraretur à vi ponderis E, quæ eſt diffe­
                <lb/>
              rentia, ſeù exceſſus, quo pondus premens DE ſupe­
                <lb/>
              rat vim eleuantem G. </s>
            </p>
            <p type="margin">
              <s id="s.000519">
                <margin.target id="marg125"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="main">
              <s id="s.000520">
                <emph type="center"/>
              PROP. XLVII.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000521">
                <emph type="center"/>
                <emph type="italics"/>
              Si oppoſitos terminos libræ, vel rotæ duæ potentiæ traham,
                <lb/>
              ambæ deorsùm tendendo, ſe mutuò impedient, &
                <lb/>
              maior potentia præualebit, ſed vi æquali
                <lb/>
              differentiæ earum.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000522">POteſt deindè alia ratione prohiberi, & impediri
                <lb/>
              deſcenſus ponderis DE abſque eò, quòd termi­
                <lb/>
              no A applicetur vis aliqua animata contraria G, &
                <lb/>
              hoc conſequitur ſi applicetur termino oppoſito B
                <lb/>
              aliud pondus F, quod dùm deorsùm impellit ad eaſ­
                <lb/>
              dem partes ad quas dirigitur pondus DE prohibetur </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>