Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[111. Figure]
[112. Figure]
[113. Figure]
[114. Figure]
[115. Figure]
[116. Figure]
[117. Figure]
[118. Figure]
[119. Figure]
[120. Figure]
[121. Figure]
[122. Figure]
[123. Figure]
[124. Figure]
[125. Figure]
[126. Figure]
[127. Figure]
[128. Figure]
[129. Figure]
[130. Figure]
[131. Figure]
[132. Figure]
[133. Figure]
[134. Figure]
[135. Figure]
[136. Figure]
[137. Figure]
[138. Figure]
[139. Figure]
[140. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001805">
                <pb pagenum="340" xlink:href="010/01/348.jpg"/>
                <arrow.to.target n="marg460"/>
                <lb/>
              minùs comprimi deberent, quàm ab aere copioſo, &
                <lb/>
              maximè condenſato, igitur in vaſe Torricelliano,
                <lb/>
              facto vacuo, vbi nullæ, aut ſaltèm exiliſſimæ aeris
                <lb/>
              particulæ reperiuntur, minùs eleuari, & magis
                <lb/>
              contuſæ eſſe deberent, aut valdè diminutos, &
                <lb/>
              exiguos globulos efficere deberent prædictę aqueæ
                <lb/>
              guttulæ à folijs braſſicæ ſuſtentatæ, quàm illæ, quæ
                <lb/>
              ab aere valdè condenſato ope follium, vel
                <expan abbr="inſtrumẽ-ti">inſtrumen­
                  <lb/>
                ti</expan>
              pneumatici in aliquo vaſe, quod tamen
                <expan abbr="falſiſſimũ">falſiſſimum</expan>
                <lb/>
              eſt, ęquè enim tumidæ ſphæricè ſuſpenduntur, & ad
                <lb/>
              eandem altitudinem, &
                <expan abbr="magnitudinẽ">magnitudinem</expan>
              eleuantur gut­
                <lb/>
              tæ aqueæ in vacuo Torricelliano ab aere rariſſimo,
                <lb/>
              quàm ab aere valdè denſo, & conſtipato, vt in Aca­
                <lb/>
              demia experimentali Medicea experti ſumus. </s>
            </p>
            <p type="margin">
              <s id="s.001806">
                <margin.target id="marg460"/>
              Cap. 8. cur
                <lb/>
              exiguæ aquæ
                <lb/>
              guttæ ſupra
                <lb/>
                <expan abbr="libellã">libellam</expan>
              aquæ
                <lb/>
              aſcendunt.</s>
            </p>
            <p type="main">
              <s id="s.001807">
                <emph type="center"/>
              PROP. CLXIV.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.001808">
                <emph type="center"/>
                <emph type="italics"/>
              Vt partes elementi aquæ ſphæricè circa centrum terræ con­
                <lb/>
              tornentur, oportet vt vires motiuæ earum versùs
                <expan abbr="cẽ-trum">cen­
                  <lb/>
                trum</expan>
              non ſint ſemper inter ſe æquales, ſed ha­
                <lb/>
              beant eamdem proportionem quam ea­
                <lb/>
              rum diſtantiæ à centro.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.001809">AD hæc poterit euidenti demonſtratione (niſi
                <lb/>
              fallor) euinci aqueas guttas non conglobari
                <lb/>
              ſphæricè à vi externa aeris compreſſiua. </s>
              <s id="s.001810">Si enim per­
                <lb/>
              pendamus, quare vniuerſum aquæ elementum circą
                <lb/>
              centrum syſtematis elementaris ſphæricè congloba­
                <lb/>
              tur, percipiemus hoc effici quia partes aquæ habent
                <lb/>
              vim ſemouendi directè versùs centrum terræ, eſtque </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>