Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[111. Figure]
[112. Figure]
[113. Figure]
[114. Figure]
[115. Figure]
[116. Figure]
[117. Figure]
[118. Figure]
[119. Figure]
[120. Figure]
[121. Figure]
[122. Figure]
[123. Figure]
[124. Figure]
[125. Figure]
[126. Figure]
[127. Figure]
[128. Figure]
[129. Figure]
[130. Figure]
[131. Figure]
[132. Figure]
[133. Figure]
[134. Figure]
[135. Figure]
[136. Figure]
[137. Figure]
[138. Figure]
[139. Figure]
[140. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001889">
                <pb pagenum="355" xlink:href="010/01/363.jpg"/>
                <arrow.to.target n="marg479"/>
                <lb/>
              grauitatis prædicti ſolidi vſque ad parietem habet
                <lb/>
              adlongitudinem EB totius ſaxi; quia corpus graue
                <lb/>
              D ſuſpenditur in medio vectis
                <expan abbr="horizõtalis">horizontalis</expan>
              EB à dua­
                <lb/>
              bus potentijs, ab illa quam exercet potentia ſuſten­
                <lb/>
              tans E, & ab aſperitate parietis denticulati in B, er­
                <lb/>
              gò ex mechanicis potentia E ad
                <expan abbr="reſiſtẽtiam">reſiſtentiam</expan>
              ponderis
                <lb/>
              D eandem rationem habet quam diſtantia DB ad to­
                <lb/>
              tam vectis EB longitudinem. </s>
            </p>
            <p type="margin">
              <s id="s.001890">
                <margin.target id="marg479"/>
              Cap. 8. cur
                <lb/>
              exiguæ aquæ
                <lb/>
              guttæ ſupra
                <lb/>
                <expan abbr="libellã">libellam</expan>
              aquæ
                <lb/>
              aſcendunt.</s>
            </p>
            <p type="main">
              <s id="s.001891">
                <emph type="center"/>
              PROP. CLXXIII.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.001892">
                <emph type="center"/>
                <emph type="italics"/>
              Iiſdem poſitis eadem potentia eleuare altiùs poterit conuer­
                <lb/>
              tendo, & rotando corpus polihedrum regulari ſimile
                <lb/>
              innixum aſperitatibus eiuſdem verticalis
                <lb/>
              parietis.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.001893">SIt corpus D anguloſum, & regulari ſimile, ita vt
                <lb/>
              centrum grauitatis eius ſit quoque centrum ma­
                <lb/>
              gnitudinis eiuſdem. </s>
              <s id="s.001894">Dico quòd eadem potentia ſub­
                <lb/>
              dupla E poterit eleuare corpus graue D ad
                <expan abbr="quãlibet">quallibet</expan>
                <lb/>
              altitudinem parietis AC; quia cùm ſolidum D ſit re­
                <lb/>
              gulare, & habeat figuram anguloſam, & denticula­
                <lb/>
              tam, vt in quolibet ſitu ſuæ ſuperficiei poſſit adnecti,
                <lb/>
              & ſuſtineri in ſub ſequentibus aſperitatibus parietis
                <lb/>
              denticulati CA, ſequitur vt quomodolibet reuolua­
                <lb/>
              tur corpus D, ſemper in ſub ſequentibus eminentijs
                <lb/>
              parietis aſperis AB paritèr ſuſtineatur fulciaturque,
                <lb/>
              atque in eodem ſitu horizontali ab ijſdem duabus
                <lb/>
              potentijs corpus D ſuſtinebitur, ſcilicèt à potentią
                <lb/>
              E, & ab aliqua denticulari eminentia parietis AC; </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>