Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[121. Figure]
[122. Figure]
[123. Figure]
[124. Figure]
[125. Figure]
[126. Figure]
[127. Figure]
[128. Figure]
[129. Figure]
[130. Figure]
[131. Figure]
[132. Figure]
[133. Figure]
[134. Figure]
[135. Figure]
[136. Figure]
[137. Figure]
[138. Figure]
[139. Figure]
[140. Figure]
[141. Figure]
[142. Figure]
[143. Figure]
[144. Figure]
[145. Figure]
[146. Figure]
[147. Figure]
[148. Figure]
[149. Figure]
[150. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000551">
                <pb pagenum="111" xlink:href="010/01/119.jpg"/>
                <arrow.to.target n="marg136"/>
                <lb/>
              ponderis ſolidi DE ſupra grauitatem aquæ F quæ ſit
                <lb/>
              æqualis mole ipſi DE, ſemper idem eſt in quacumque
                <lb/>
              aquæ profunditate ſolidum collocetur, ſitque pon­
                <lb/>
              dus E exceſſus quo pondus DE ſuperat grauitatem̨
                <lb/>
              aquæ F, igitur conatus, vis, & impetus, quo ſolidum
                <lb/>
              DE deſcendit infra
                <expan abbr="aquã">aquam</expan>
              menſuratur à vi
                <expan abbr="põderis">ponderis</expan>
              E. </s>
            </p>
            <p type="margin">
              <s id="s.000552">
                <margin.target id="marg136"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="main">
              <s id="s.000553">
                <emph type="center"/>
              PROP. LII.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000554">
                <emph type="center"/>
                <emph type="italics"/>
              Vis motiua qua ſolidum leuius ſpecie, quàm fluidum aſcen­
                <lb/>
              dit æqualis est exceſſui leuitatis ſolidi ſupra leuita­
                <lb/>
              tem fluidi ei æqualis mole.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000555">E Contrà, ſi ſupponamus, quod lignum DE pari­
                <lb/>
              terque aqua F careant grauitate, ſed
                <expan abbr="tãtummo-dò">tantummo­
                  <lb/>
                dò</expan>
              à vi leuitatis informentur, & ambo impulſum, &
                <lb/>
              impetum faciant ſursùm conenturque aſcendere,
                <expan abbr="">non</expan>
                <lb/>
              ſecùs oſtendetur, quòd in libra, ſeù rota perpetua
                <lb/>
              ligni DE maior leuitas præualebit ſuperabitque mi­
                <lb/>
              norem leuitatem fluidi collateralis F, proindeque
                <lb/>
              libra inflectetur ab A versùs R aſcendendo tanta vi,
                <lb/>
              quanta eſt differentia, ſeù exceſſus E, quo leuitas li­
                <lb/>
              gni ſuperat aquæ leuitatem. </s>
            </p>
            <p type="main">
              <s id="s.000556">
                <emph type="center"/>
              PROP. LIII.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000557">
                <emph type="center"/>
                <emph type="italics"/>
              Vis motiua qua leue corpus in fluido graui aſcendit æqualis
                <lb/>
              eſſe debet ſummæ lenitatis ſolidi, & grauitatis
                <lb/>
              fluidi.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000558">SI verò variata hypoteſi ponamus
                <expan abbr="lĩgnum">lignum</expan>
              F leue,
                <lb/>
              & ſursùm ab intrinſeco principio impelli, & mo-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>