Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[141. Figure]
[142. Figure]
[143. Figure]
[144. Figure]
[145. Figure]
[146. Figure]
[147. Figure]
[148. Figure]
[149. Figure]
[150. Figure]
[151. Figure]
[152. Figure]
[153. Figure]
[154. Figure]
[155. Figure]
[156. Figure]
[157. Figure]
[158. Figure]
[159. Figure]
[160. Figure]
[161. Figure]
[162. Figure]
[163. Figure]
[164. Figure]
[165. Figure]
[166. Figure]
[167. Figure]
[168. Figure]
[169. Figure]
[170. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001810">
                <pb pagenum="341" xlink:href="010/01/349.jpg"/>
                <arrow.to.target n="marg461"/>
                <lb/>
              talis vis motiua in eodem corpore homogeneo aquæ
                <lb/>
              non ſemper eiuſdem gradus, niſi cùm partes exter­
                <lb/>
              næ à centro terræ æquè recedunt. </s>
            </p>
            <p type="margin">
              <s id="s.001811">
                <margin.target id="marg461"/>
              Cap. 8. cur
                <lb/>
              exiguæ aquæ
                <lb/>
              guttæ ſupra
                <lb/>
                <expan abbr="libellã">libellam</expan>
              aquæ
                <lb/>
              aſcendunt.</s>
            </p>
            <p type="main">
              <s id="s.001812">Sit ergo punctum E centrum globi terraquei, &
                <lb/>
              ſupponamus aquam ABCD inæqualitèr diſtare à
                <expan abbr="cẽ-tro">cen­
                  <lb/>
                tro</expan>
              E, ſcilicèt à vi externa, v. g. ſit eleuatus mons a­
                <lb/>
              queus MAK ſupra reliquam eius ſuperficiem ſphæri­
                <lb/>
              cam BCD. & ſiquidem vis
                <lb/>
                <figure id="id.010.01.349.1.jpg" xlink:href="010/01/349/1.jpg"/>
                <lb/>
              motiua deorsùm | impellens
                <lb/>
              versùs centrum E eſſet
                <expan abbr="eiuſ-dẽ">eiuſ­
                  <lb/>
                dem</expan>
              energiæ in aqua A, atque
                <lb/>
              in B, non poſſet deprimi ſu­
                <lb/>
              prema aqua A deorsùm, ex­
                <lb/>
              pellendo, & ſuperando
                <expan abbr="reſi-ſtentiã">reſi­
                  <lb/>
                ſtentiam</expan>
              aquæ B, vel D, quia
                <lb/>
              nimirùm potentia æqualis in
                <lb/>
                <expan abbr="æqualẽ">æqualem</expan>
              minimè agere poteſt. </s>
              <s id="s.001813">Neceſsè ergò eſt vt aqua
                <lb/>
              eleuata MAK maiorem vim
                <expan abbr="compreſſiuã">compreſſiuam</expan>
              habeat,
                <expan abbr="quã">quam</expan>
                <lb/>
              aqua B: eſtque hoc euidentiſſimum, quia moles aquæ
                <lb/>
              EA, quæ altior, copioſior, & ideò grauior eſt, ſupera­
                <lb/>
              bit reſiſtentiam minùs eleuatæ aquæ EB, & minoris
                <lb/>
              molis; Igitur vera cauſa, quare elementum aquæ cir­
                <lb/>
              ca centrum terræ ſphæricè contornatur, eſt, quia par­
                <lb/>
              tes aquæ cum reliquis continuatæ magis à centro
                <lb/>
              terræ eleuatæ, maiorem vim compreſſiuam habent,
                <lb/>
              quàm alię partes minùs à prædicto centro
                <expan abbr="recedẽtes">recedentes</expan>
              .
                <lb/>
                <figure id="id.010.01.349.2.jpg" xlink:href="010/01/349/2.jpg"/>
              </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>