Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[141. Figure]
[142. Figure]
[143. Figure]
[144. Figure]
[145. Figure]
[146. Figure]
[147. Figure]
[148. Figure]
[149. Figure]
[150. Figure]
[151. Figure]
[152. Figure]
[153. Figure]
[154. Figure]
[155. Figure]
[156. Figure]
[157. Figure]
[158. Figure]
[159. Figure]
[160. Figure]
[161. Figure]
[162. Figure]
[163. Figure]
[164. Figure]
[165. Figure]
[166. Figure]
[167. Figure]
[168. Figure]
[169. Figure]
[170. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.002535">
                <pb pagenum="479" xlink:href="010/01/487.jpg"/>
                <arrow.to.target n="marg657"/>
                <lb/>
              minus verò pondus B pendeat nedùm ex D, ſed
                <expan abbr="etiã">etiam</expan>
                <lb/>
              ex G; & vt A ad B, ita fiat DI ad IC, nec non GL ad
                <lb/>
              LF, erunt I, & L centra grauitatum librarum, fiat po­
                <lb/>
              ſtea HN media proportionalis inter HL, & EI;
                <expan abbr="pa-riterq;">pa­
                  <lb/>
                riterque</expan>
              ponatur HO media proportionalis inter HG,
                <lb/>
              & ED; patet HG ad HO ſubduplicatam proportio­
                <lb/>
              nem habere radij HG ad ED; dico velocitatem reuo­
                <lb/>
              lutionis libræ FG ad
                <expan abbr="velocitatẽ">velocitatem</expan>
              vertiginis libræ CD
                <lb/>
                <figure id="id.010.01.487.1.jpg" xlink:href="010/01/487/1.jpg"/>
                <lb/>
              eamdem proportionem habe­
                <lb/>
              re, quam HG ad HO; quia vt
                <lb/>
              A ad B, ita erat GL ad LF,
                <expan abbr="atq;">atque</expan>
                <lb/>
              DI ad IC, ergo componendo
                <lb/>
              GF ad FL erit vt DC ad CI, &
                <lb/>
              antecedentium ſemiſſes HF ad
                <lb/>
              FL, atque EC ad CI proporti­
                <lb/>
              onales erunt, & per conuerſio­
                <lb/>
              nem rationis HF ad HL erit vt CE ad EI, & permu­
                <lb/>
              tando FH ad CE, ſeu HG ad ED erit vt LH ad IE, &
                <lb/>
              earum ſubduplicatæ proportiones eædem quoquę
                <lb/>
              erunt, nimirùm HG ad HO, vt HL ad HN; poſteą
                <lb/>
              quia duo pondera A, & B exercent eorum vim in
                <expan abbr="cẽ-tris">cen­
                  <lb/>
                tris</expan>
              grauitat
                <expan abbr="ũlibrarum">ullibrarum</expan>
              L, & I, &
                <expan abbr="ſuſpẽduntur">ſuſpenduntur</expan>
              ex
                <expan abbr="pũ-">pun­
                  <lb/>
                </expan>
                <arrow.to.target n="marg658"/>
                <lb/>
              ctis H, & E, ergo efficiunt duo funependula HL, &
                <lb/>
              EI, quæ conantur deſcendere per arcus LM, IK, ſed
                <lb/>
              pendulorum velocitates ſubduplicatam proportio­
                <lb/>
              nem habent longitudinum eorum, igitur velocitas
                <lb/>
              deſcenſus libræ FG ad velocitatem deſcenſus libræ
                <lb/>
              CD eamdem proportionem habebit, quam LH ad
                <lb/>
              HN, ſeu quam habet HG ad HO, quod erat primum. </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>