Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[151. Figure]
[152. Figure]
[153. Figure]
[154. Figure]
[155. Figure]
[156. Figure]
[157. Figure]
[158. Figure]
[159. Figure]
[160. Figure]
[161. Figure]
[162. Figure]
[163. Figure]
[164. Figure]
[165. Figure]
[166. Figure]
[167. Figure]
[168. Figure]
[169. Figure]
[170. Figure]
[171. Figure]
[172. Figure]
[173. Figure]
[174. Figure]
[175. Figure]
[176. Figure]
[177. Figure]
[178. Figure]
[179. Figure]
[180. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000918">
                <pb pagenum="180" xlink:href="010/01/188.jpg"/>
                <arrow.to.target n="marg231"/>
                <lb/>
              retur, nullo pacto in tali caſu poſſet aqua ab inferiori
                <lb/>
              ſitu H ſursùm impellere aerem G, propterea quod
                <lb/>
              aqua DB cogitur excurrere deorsùm per vaſis aper­
                <lb/>
              tum foramen B, & ideò non poteſt motu reflexo ſur­
                <lb/>
              sùm impellere aerem G. igitur neceſsè eſt vt globus
                <lb/>
              aereus G deferatur à vi fluentis aquæ, vt ipſa experi­
                <lb/>
              entia oſtendit. </s>
              <s id="s.000919">Vnde colligitur, quod nullum ex ad­
                <lb/>
              ductis, & excogitatis
                <expan abbr="experimẽtis">experimentis</expan>
              vſque adhuc euin­
                <lb/>
              cere perſuadereque poteſt exiſtentiam leuitatis po­
                <lb/>
              ſitiuæ, & è contrà ſemper multò magis confirmatur,
                <lb/>
              demonſtraturque eius non exiſtentia, quaproptèr fa­
                <lb/>
              tendum eſt corpora, quæ leuia appellantur, ſursùm
                <lb/>
              impelli per extruſionem à fluidis ambientibus gra­
                <lb/>
              uioribus. </s>
            </p>
            <p type="margin">
              <s id="s.000920">
                <margin.target id="marg231"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="main">
              <s id="s.000921">Sed coronidis loco afferam demonſtrationem à
                <lb/>
              me excogitatam, abſolutè non dari in natura
                <expan abbr="poſitiuã">poſitiuam</expan>
                <lb/>
              leuitatem, vtque commodiùs hoc efficiam primò
                <lb/>
              nonnullas ſuppoſitiones ſenſui manifeſtas
                <expan abbr="proponã">proponam</expan>
              ,
                <lb/>
              & deinceps aliqua lemmata ex principijs mechani­
                <lb/>
              cis deſumpta demonſtrabo. </s>
            </p>
            <p type="main">
              <s id="s.000922">
                <emph type="center"/>
                <emph type="italics"/>
              DEFINITIO I.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000923">ET primò noto, quòd corpus ſiue ſimilare, & ho­
                <lb/>
              mogeneum, ſiue heterogeneum, tunc vocatur
                <lb/>
              exiſtimaturque rarius ſpecie, quàm aliud, quando
                <lb/>
              ſumptis æqualibus molibus eorumdem illud
                <expan abbr="minorẽ">minorem</expan>
                <lb/>
              copiam materialis ſubſtantiæ corporeæ, & ſenſibi­
                <lb/>
              lis comprehendit in eodem ſpatio, quàm iſtud, quòd
                <lb/>
              profectò concipi poteſt, ſi intelligatur mino: copia </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>