Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[151. Figure]
[152. Figure]
[153. Figure]
[154. Figure]
[155. Figure]
[156. Figure]
[157. Figure]
[158. Figure]
[159. Figure]
[160. Figure]
[161. Figure]
[162. Figure]
[163. Figure]
[164. Figure]
[165. Figure]
[166. Figure]
[167. Figure]
[168. Figure]
[169. Figure]
[170. Figure]
[171. Figure]
[172. Figure]
[173. Figure]
[174. Figure]
[175. Figure]
[176. Figure]
[177. Figure]
[178. Figure]
[179. Figure]
[180. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.002370">
                <pb pagenum="452" xlink:href="010/01/460.jpg"/>
                <arrow.to.target n="marg610"/>
                <lb/>
              præterea quia vniuerſum corpus BC, eiuſque portio
                <lb/>
              B ſunt ſimilia, & eiuſdem grauitatis ſpecificæ, & ſo­
                <lb/>
              lummodò moles inæquales
                <expan abbr="habẽt">habent</expan>
              ,
                <lb/>
                <figure id="id.010.01.460.1.jpg" xlink:href="010/01/460/1.jpg"/>
                <lb/>
              ſcilicèt eorum abſoluta pondera in­
                <lb/>
              æqualia ſunt, igitur ablatis om­
                <lb/>
              nibus impedimentis, ſcilicèt iņ
                <lb/>
                <arrow.to.target n="marg611"/>
                <lb/>
              vacuo, eadem velocitate deſcen­
                <lb/>
              det integrum corpus BC atque eius
                <lb/>
              portio B: oſtenſa autem priùs fuere
                <lb/>
              duo corpora A, & B in vacuo æquè velocia, igitur cor­
                <lb/>
              pus BC, atque A, erunt quoque in vacuo æquè velo­
                <lb/>
              cia, quod erat demonſtrandum. </s>
            </p>
            <p type="margin">
              <s id="s.002371">
                <margin.target id="marg609"/>
              Pro. 211.</s>
            </p>
            <p type="margin">
              <s id="s.002372">
                <margin.target id="marg610"/>
              Cap. 10. de
                <lb/>
              æquitempo­
                <lb/>
              ranea natu­
                <lb/>
              rali veloci­
                <lb/>
              tate
                <expan abbr="grauiũ">grauium</expan>
              .</s>
            </p>
            <p type="margin">
              <s id="s.002373">
                <margin.target id="marg611"/>
              Pro. 209. &
                <lb/>
              210.</s>
            </p>
            <p type="main">
              <s id="s.002374">Ex hiſce propoſitionibus deducitur, quod omnią
                <lb/>
              corpora grauia, quomodocumque inter ſe differant
                <lb/>
              pondere, magnitudine, & figura, apta nata ſunt ex
                <lb/>
              ſui natura deorsùm
                <expan abbr="deſcẽdere">deſcendere</expan>
              pari velocitate, & hoc
                <lb/>
              procùl dnbio contingeret, quando nil prorsùs à me­
                <lb/>
              dio fluido impedirentur, quod ſolummodò verifica­
                <lb/>
              ri poſſetin ſpatio prorsùs inani, vbi ſi feſtuca, vel
                <lb/>
              pluma, & ingens maſſa ferrea ab eodem termino de­
                <lb/>
              ſcenſum inchoarent, ſemper pari paſſu, & æquabili
                <lb/>
              motu excurrerent, neque aliquando ferrum
                <expan abbr="feſtucã">feſtucam</expan>
                <lb/>
              anticiparet. </s>
              <s id="s.002375">Propoſitio profectò admirabilis, quæ
                <lb/>
              paradoxum cenſeri potuerat cùm primùm à Galileo
                <lb/>
              coniecturalibus
                <expan abbr="tãtummodò">tantummodò</expan>
              rationibus prolata fuit,
                <lb/>
              quæ modò cum euidentia geometrica demonſtratą
                <lb/>
              fuerit, nullam anſam dubitandi relinquit. </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>