Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[151. Figure]
[152. Figure]
[153. Figure]
[154. Figure]
[155. Figure]
[156. Figure]
[157. Figure]
[158. Figure]
[159. Figure]
[160. Figure]
[161. Figure]
[162. Figure]
[163. Figure]
[164. Figure]
[165. Figure]
[166. Figure]
[167. Figure]
[168. Figure]
[169. Figure]
[170. Figure]
[171. Figure]
[172. Figure]
[173. Figure]
[174. Figure]
[175. Figure]
[176. Figure]
[177. Figure]
[178. Figure]
[179. Figure]
[180. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.002548">
                <pb pagenum="483" xlink:href="010/01/491.jpg"/>
                <arrow.to.target n="marg663"/>
              </s>
            </p>
            <p type="margin">
              <s id="s.002549">
                <margin.target id="marg663"/>
              Cap. 11. gra­
                <lb/>
              uia in fluido
                <lb/>
              velocitati­
                <lb/>
              bus inæqua­
                <lb/>
              libus ferri
                <lb/>
              debere.</s>
            </p>
            <p type="main">
              <s id="s.002550">SInt duo cylindri homogenei, primò aqua leuiores
                <lb/>
              ABC, & DEF, quorum altitudines AB, DE æqua­
                <lb/>
              les ſint, baſis verò BC maior ſit, quàm EF, &
                <expan abbr="sẽper">semper</expan>
              in­
                <lb/>
                <figure id="id.010.01.491.1.jpg" xlink:href="010/01/491/1.jpg"/>
                <lb/>
              fra aquam demerſi in vaſis amplis aſ­
                <lb/>
              cendendo percurrant ſpatia æqualia
                <lb/>
              X & Z, AC
                <expan abbr="quidẽ">quidem</expan>
              tempore T, & DF
                <lb/>
              tempore V: dico quòd tempus T pa­
                <lb/>
              rùm maius erit quàm V. quia dum in
                <lb/>
              aqua eleuantur ſolida AC & DF con­
                <lb/>
              ſtituunt cum ambiente
                <expan abbr="cõtigua">contigua</expan>
              aqua
                <lb/>
              duos
                <expan abbr="ſipũones">ſiphones</expan>
              excauatos, æquè altos, </s>
            </p>
            <p type="main">
              <s id="s.002551">
                <arrow.to.target n="marg664"/>
                <lb/>
              quorum fiſtulæ inæquales ſunt, nam̨
                <lb/>
              craſſities fluentis aquæ circa cylindrum AC æqualis
                <lb/>
              eſt baſi cylindri BC, pariterque craſſities fluentis a­
                <lb/>
              quæ circa cylindrum DF æqualis eſt craſſitiei EF:
                <expan abbr="erũt">erunt</expan>
                <lb/>
              igitur duo ſiphones ex directis, æquè altis, & conti­
                <lb/>
              guis fiſtulis compoſiti, & in vnoquoque eorum duæ
                <lb/>
              collaterales fiſtulæ æquales ſunt, atque duæ internæ
                <lb/>
              ſiphonum fiſtulæ
                <expan abbr="occupãtur">occupantur</expan>
              à cylindris AC, & DF ho­
                <lb/>
                <arrow.to.target n="marg665"/>
                <lb/>
              mogeneis, & aqua leuioribus, & æquè altis, ergo pa­
                <lb/>
              rùm tardiùs aſcendet craſſior cylinder AC, quàm DF,
                <lb/>
              ſupponuntur autem aſcendiſſe ſpatia æqualia X & Z
                <lb/>
              temporibus T, & V; igitur tempus T maius erit tem­
                <lb/>
              pore V. ſi verò aſcenſus fiant æqualibus temporibus,
                <lb/>
              ſpatium aſcenſus latioris cylindri minus erit ſpatio
                <lb/>
              tranſacto à cylindro ſtrictiori: Quia cùm parum tar­
                <lb/>
              diùs aſcendat cylinder AC quàm DF, ergo æqualibus
                <lb/>
              temporibus T & V percurret AC minus ſpatium X
                <lb/>
              dum DF maius ſpatium Z pertranſit. </s>
              <s id="s.002552">ſecundò ſint
                <expan abbr="ijdẽ">ijdem</expan>
              </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>