Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[Figure 161]
[Figure 162]
[Figure 163]
[Figure 164]
[Figure 165]
[Figure 166]
[Figure 167]
[Figure 168]
[Figure 169]
[Figure 170]
[Figure 171]
[Figure 172]
[Figure 173]
[Figure 174]
[Figure 175]
[Figure 176]
[Figure 177]
[Figure 178]
[Figure 179]
[Figure 180]
[Figure 181]
[Figure 182]
[Figure 183]
[Figure 184]
[Figure 185]
[Figure 186]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.002864">
                <pb pagenum="534" xlink:href="010/01/542.jpg"/>
                <arrow.to.target n="marg755"/>
              </s>
            </p>
            <p type="margin">
              <s id="s.002865">
                <margin.target id="marg755"/>
              Cap. 12. dę
                <lb/>
              vacui neceſ­
                <lb/>
              ſitate.</s>
            </p>
            <p type="main">
              <s id="s.002866">
                <emph type="center"/>
              PROP. CCLXIV.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.002867">
                <emph type="center"/>
                <emph type="italics"/>
              Primò ſi duæ ſuperficies planæ duorum corporum inflexibi
                <lb/>
              lium ſeſe tangant, & poſtea ſeparari debeant, aut illo
                <lb/>
              motu, quo plana ſemper ad inuicem æquidiſtant, aut an­
                <lb/>
              gularitèr inclinentur, neceſſariò vacuum admitti debet.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.002868">SInt duæ laminæ omninò duræ, & inflexibiles AB
                <lb/>
              C, & FEH, quæ ſuis planis ſuperficiebus ADC,
                <lb/>
              & GEH ſe mutuo tangant. </s>
              <s id="s.002869">aio,
                <lb/>
                <figure id="id.010.01.542.1.jpg" xlink:href="010/01/542/1.jpg" number="183"/>
                <lb/>
              quod ſi ſuprema lamina ſubleue­
                <lb/>
              tur, aut flectendo angularitèr, aut
                <lb/>
              transferendo ſursùm ſuperficiem
                <lb/>
              GEH motu ſibi ipſi æquidiſtanti,
                <lb/>
              neceſſariò
                <expan abbr="vacuũ">vacuum</expan>
              admitti debet;
                <lb/>
              quia ob rigidam inflexibilemque
                <lb/>
              duritiem corporum ABC, & FEH ſuperficies ADC,
                <lb/>
              & GEH ſemper eamdem directam planitiem
                <expan abbr="retinẽt">retinent</expan>
              ,
                <lb/>
              ſiuè quieſcant, ſiuè moueantur, ergo in actu ſepara­
                <lb/>
              tionis fieri non poteſt vt pars plani GEH diuellatur,
                <lb/>
              ſepareturque à ſubiecto plano perſeuerante
                <expan abbr="cõtactu">contactu</expan>
                <lb/>
              reliquæ partis, aliàs duo plana haberent ſegmentum
                <lb/>
              commune, quod eſt impoſſibile. </s>
              <s id="s.002870">Hinc ſequitur, quod
                <lb/>
              diuulſio, & ſeparatio planarum ſuperficierum ADC,
                <lb/>
              & GEH fieri debeat non ſucceſſiuè, & in tempore, v­
                <lb/>
              na pars poſt aliam, ſed tota ſimùl in vnico inſtanti,
                <lb/>
              itaut omnes partes ſupremæ ſuperficiei ſimul diuelli,
                <lb/>
              ſepararique debeant ab omnibus partibus ſuperfi­
                <lb/>
              ciei infimæ; quaproptèr neceſsè eſt, vt in illo vnico
                <lb/>
              inſtanti ſeparationis creetur ſpatium interceptum̨,
                <lb/>
              cuius figura, aut parallelepipeda erit, (ſi ſuperficie-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>