Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[181. Figure]
[182. Figure]
[183. Figure]
[184. Figure]
[185. Figure]
[186. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000923">
                <pb pagenum="181" xlink:href="010/01/189.jpg"/>
                <arrow.to.target n="marg232"/>
                <lb/>
              materiei ſenſibilis in maiori ſpatio corporis rarioris
                <lb/>
              extenſa per interpoſitionem inanium ſpatiolorum. </s>
            </p>
            <p type="margin">
              <s id="s.000924">
                <margin.target id="marg232"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="main">
              <s id="s.000925">
                <emph type="center"/>
                <emph type="italics"/>
              DEFINITIO II.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000926">SI verò moles æquales, ſiuè inæquales non con­
                <lb/>
              ſiderentur, & raritas in vna earum
                <expan abbr="contẽta">contenta</expan>
              ma­
                <lb/>
              ior fuerit raritate alterius, tunc dicetur illa raritas
                <lb/>
                <arrow.to.target n="marg233"/>
                <lb/>
              abſolutè maior reliqua, ſiuè exceſſus raritatis exten­
                <lb/>
              ſiuè in maiori mole multiplicetur, ſiuè intenſiuè iņ
                <lb/>
              minori mole augeatur. </s>
            </p>
            <p type="margin">
              <s id="s.000927">
                <margin.target id="marg233"/>
              Sup. 8.</s>
            </p>
            <p type="main">
              <s id="s.000928">
                <emph type="center"/>
                <emph type="italics"/>
              SVPPOSITIO VII.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000929">PRæterea ſuppono ex Ariſtotele raritatem alicu­
                <lb/>
              ius corporis multiplicari, & augeri in infinitum
                <lb/>
              poſſe prout ſubſtantialis moles corporea, quæ in eo­
                <lb/>
              dem ſpatio continebatur, ſucceſſiuè imminuitur, &
                <lb/>
              poſt diminutionem extenditur expanditurque vt re­
                <lb/>
              pleat idipſum ſpatium, quod prius à non imminuto
                <lb/>
              corpore occupabatur. </s>
            </p>
            <p type="main">
              <s id="s.000930">
                <emph type="center"/>
                <emph type="italics"/>
              SVPPOSITIO VIII.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000931">SVppono præterea, quòd vis quæ requiritur ad
                <lb/>
              ſeparanda duo corpora ſe mutuò tangentia im­
                <lb/>
              mediato, & exquiſito contactu, (quod accidit
                <expan abbr="quã-do">quan­
                  <lb/>
                do</expan>
              eorum ſuperficies ſunt omninò ſimiles, & optimè
                <lb/>
              lęuigatæ) non eſt infinita, ſed determinata, quia ni­
                <lb/>
              mirùm ſenſus euidentia oſtendit, quod ſi potentią
                <lb/>
              motiua augeatur ſemper magis, ac magisne dùm cor­
                <lb/>
              pora ſe mutuò tangentia ſeparantur, & ab inuicem </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>