Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001594">
                <pb pagenum="303" xlink:href="010/01/311.jpg"/>
                <arrow.to.target n="marg410"/>
                <lb/>
              ribus duris, cum arenæ particulæ quieſcant, nec
                <expan abbr="tamẽ">tamen</expan>
                <lb/>
              cumulum ſolidum, & durum efficiant. </s>
              <s id="s.001595">Ex eo igitur,
                <lb/>
              quod videmus in corpore duro vnam eius partem̨
                <lb/>
              moueri non poſſe quieſcentibus collateralibus, planè
                <lb/>
              deducitur, quòd non ſufficit ſimplex contactus par­
                <lb/>
              tium immotarum, ſed præterea neceſſe eſt, vt ſint ad
                <lb/>
              inuicem connexæ, & agglutinatæ, vt firmitudinem, &
                <lb/>
              duritiem creare poſſint. </s>
              <s id="s.001596">& ſanè ſi reuerà corpus ſub­
                <lb/>
              diuiſum fuerit in minutiſſimas particulas rotundas,
                <lb/>
              aut ad rotunditatem proximè accedentes, & careant
                <lb/>
              omni ſcabritie, ſintque omnes æquè graues, & in qui­
                <lb/>
              ete conſtitutæ, tunc eſt impoſſibile, vt prædictum ag­
                <lb/>
              gregatum durum, & conſiſtens ſit, nec poterit ſuſti­
                <lb/>
              neri, vt arena in accliui, &
                <expan abbr="mõtuoſa">montuoſa</expan>
              eleuatione, prop­
                <lb/>
              terea quod particularum figuræ rotundæ, & lęuigatæ
                <lb/>
              non poſſunt vetare excurſum, atque deſcenſum par­
                <lb/>
              tium earundem grauium, & proindè neceſſe eſt vt ex­
                <lb/>
              planentur, nec vna eius pars maiorem eleuationem̨
                <lb/>
              ſupra planitiem horizontis habere poterit, quàm a­
                <lb/>
              lia; præterea quodlibet corpus conſiſtens intra præ­
                <lb/>
              dictum aggregatum demerſum ſi vim compreſſiuam,
                <lb/>
              ſeù grauitatem maiorem habuerit, quàm particulæ
                <lb/>
              illæ ſub diuiſæ, facilè poterunt impelli, ac eleuari ſu­
                <lb/>
              pra eius libellam, & ob earum rotunditatem, & lęui­
                <lb/>
              tatem nullo negotio excurrere circa corpus
                <expan abbr="demersũ">demersum</expan>
                <lb/>
              poſſunt, idque omni ex parte contingere, atque ad
                <lb/>
                <arrow.to.target n="marg411"/>
                <lb/>
              eius figuram accommodari. </s>
            </p>
            <p type="margin">
              <s id="s.001597">
                <margin.target id="marg410"/>
              Cap. 7. dę
                <lb/>
              natura flui­
                <lb/>
              ditatis.</s>
            </p>
            <p type="margin">
              <s id="s.001598">
                <margin.target id="marg411"/>
                <expan abbr="Argumentũ">Argumentum</expan>
                <lb/>
              contra ſupe­
                <lb/>
              riorem do­
                <lb/>
              ctrinam.</s>
            </p>
            <p type="main">
              <s id="s.001599">Sed videamus qua ratione ingenioſiſſimus Author
                <lb/>
              neotericus hanc ſententiam confirmare nitatur, quòd </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>