Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.001805
">
<
pb
pagenum
="
340
"
xlink:href
="
010/01/348.jpg
"/>
<
arrow.to.target
n
="
marg460
"/>
<
lb
/>
minùs comprimi deberent, quàm ab aere copioſo, &
<
lb
/>
maximè condenſato, igitur in vaſe Torricelliano,
<
lb
/>
facto vacuo, vbi nullæ, aut ſaltèm exiliſſimæ aeris
<
lb
/>
particulæ reperiuntur, minùs eleuari, & magis
<
lb
/>
contuſæ eſſe deberent, aut valdè diminutos, &
<
lb
/>
exiguos globulos efficere deberent prædictę aqueæ
<
lb
/>
guttulæ à folijs braſſicæ ſuſtentatæ, quàm illæ, quæ
<
lb
/>
ab aere valdè condenſato ope follium, vel
<
expan
abbr
="
inſtrumẽ-ti
">inſtrumen
<
lb
/>
ti</
expan
>
pneumatici in aliquo vaſe, quod tamen
<
expan
abbr
="
falſiſſimũ
">falſiſſimum</
expan
>
<
lb
/>
eſt, ęquè enim tumidæ ſphæricè ſuſpenduntur, & ad
<
lb
/>
eandem altitudinem, &
<
expan
abbr
="
magnitudinẽ
">magnitudinem</
expan
>
eleuantur gut
<
lb
/>
tæ aqueæ in vacuo Torricelliano ab aere rariſſimo,
<
lb
/>
quàm ab aere valdè denſo, & conſtipato, vt in Aca
<
lb
/>
demia experimentali Medicea experti ſumus. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.001806
">
<
margin.target
id
="
marg460
"/>
Cap. 8. cur
<
lb
/>
exiguæ aquæ
<
lb
/>
guttæ ſupra
<
lb
/>
<
expan
abbr
="
libellã
">libellam</
expan
>
aquæ
<
lb
/>
aſcendunt.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001807
">
<
emph
type
="
center
"/>
PROP. CLXIV.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001808
">
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Vt partes elementi aquæ ſphæricè circa centrum terræ con
<
lb
/>
tornentur, oportet vt vires motiuæ earum versùs
<
expan
abbr
="
cẽ-trum
">cen
<
lb
/>
trum</
expan
>
non ſint ſemper inter ſe æquales, ſed ha
<
lb
/>
beant eamdem proportionem quam ea
<
lb
/>
rum diſtantiæ à centro.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001809
">AD hæc poterit euidenti demonſtratione (niſi
<
lb
/>
fallor) euinci aqueas guttas non conglobari
<
lb
/>
ſphæricè à vi externa aeris compreſſiua. </
s
>
<
s
id
="
s.001810
">Si enim per
<
lb
/>
pendamus, quare vniuerſum aquæ elementum circą
<
lb
/>
centrum syſtematis elementaris ſphæricè congloba
<
lb
/>
tur, percipiemus hoc effici quia partes aquæ habent
<
lb
/>
vim ſemouendi directè versùs centrum terræ, eſtque </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>