Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
pb
pagenum
="
428
"
xlink:href
="
010/01/436.jpg
"/>
<
p
type
="
main
">
<
s
id
="
s.002209
">
<
arrow.to.target
n
="
marg565
"/>
<
lb
/>
<
emph
type
="
italics
"/>
tatis defectu prouenire, neque ſolida huius aſſertionis ratio
<
lb
/>
afferri potest.
<
emph.end
type
="
italics
"/>
<
lb
/>
<
arrow.to.target
n
="
marg566
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002210
">
<
margin.target
id
="
marg565
"/>
Cap. 10. de
<
lb
/>
æquitempo
<
lb
/>
ranea natu
<
lb
/>
rali veloci
<
lb
/>
tate
<
expan
abbr
="
grauiũ
">grauium</
expan
>
.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002211
">
<
margin.target
id
="
marg566
"/>
IV.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002212
">
<
emph
type
="
italics
"/>
Quia facilius à grauiori corpore vinci poteſt medij
<
expan
abbr
="
reſiſtẽ-tia
">reſiſten
<
lb
/>
tia</
expan
>
<
emph.end
type
="
italics
"/>
, ait,
<
emph
type
="
italics
"/>
fore vt celerior ille grauioris corporis
<
expan
abbr
="
deſcẽſus
">deſcenſus</
expan
>
à ma
<
lb
/>
iori eiuſdem grauitate oriatur.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002213
">
<
arrow.to.target
n
="
marg567
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002214
">
<
margin.target
id
="
marg567
"/>
V.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002215
">Tandem Ariſtotelis argumentum validiſſimum eſ
<
lb
/>
ſe probat,
<
emph
type
="
italics
"/>
nam cùm grauitas in certa aliqua proportione
<
lb
/>
reſistentiam medij ſuperet, ſequitur proportiones inter gra
<
lb
/>
uitatem, & medium abſque fine multiplicari poſſe, quare ſi
<
lb
/>
ſupponatur corpus aliquod per ſpatium imaginarium in cer
<
lb
/>
to velocitatis gradu, impellente grauitate deſcendere, pote
<
lb
/>
rit vtique dari corpus, cui talis ſit reſpectu medij realis pro
<
lb
/>
portio, vt pari illud velocitate tranſcurrat: infinita
<
expan
abbr
="
tamẽ
">tamen</
expan
>
<
lb
/>
erit diſtantia inter reſistentiam medij realis huic corpori col
<
lb
/>
lati, & reſiſtentiam ſpatij imaginarij comparati cum al
<
lb
/>
tero, quod ille æquali in eo velocitate moueri ſupponitur. </
s
>
<
s
id
="
s.002216
">Id
<
lb
/>
verò abſurdisſimum eſſe quilibet ſtatim pronunciabit.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002217
">
<
arrow.to.target
n
="
marg568
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002218
">
<
margin.target
id
="
marg568
"/>
VI.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002219
">
<
emph
type
="
italics
"/>
Verſa igitur argumenti formula: quia reſiſtentia medij
<
lb
/>
grauitatem non nihil retardat celeriùſque fertur graue vbi
<
lb
/>
minùs illi reſistitur, cùm nulla ſit inter medium
<
emph.end
type
="
italics
"/>
(plenum̨
<
lb
/>
ſupple)
<
emph
type
="
italics
"/>
ſpatiumque vacuum proportio, ſequetur neceſſa
<
lb
/>
riò neque vllam fore inter tempus in quo corpus graue de
<
lb
/>
terminatam medij quantitatem emetitur; & tempus in
<
lb
/>
quo tantumdem ſpatij vacui tranſcurrit, quare ſpatium il
<
lb
/>
lud vacuum in momento conficiet.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002220
">
<
arrow.to.target
n
="
marg569
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002221
">
<
margin.target
id
="
marg569
"/>
Reſponde
<
lb
/>
tur primæ
<
lb
/>
difficultati
<
lb
/>
ex ſuperiùs
<
lb
/>
adductis.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002222
">Ad primam ergo difficultatem reſpondeo breui
<
lb
/>
tèr verum non eſſe quod effectus maioris velocitatis
<
lb
/>
dependeat tamquàm à cauſa efficiente à virtute ma
<
lb
/>
ioris grauitatis in ipſo actu deſcenſus. </
s
>
<
s
id
="
s.002223
">Quia vt oſten-</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>