Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.002438
">
<
expan
abbr
="
tẽ-
">
<
pb
pagenum
="
463
"
xlink:href
="
010/01/471.jpg
"/>
<
arrow.to.target
n
="
marg630
"/>
<
lb
/>
pus</
expan
>
T ad V, ita erit moles aquæ R ad S. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002439
">
<
margin.target
id
="
marg629
"/>
Ibidem.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002440
">
<
margin.target
id
="
marg630
"/>
Cap. 11. gra
<
lb
/>
uia in fluido
<
lb
/>
velocitati
<
lb
/>
bus inæqua
<
lb
/>
libus ferri
<
lb
/>
debere.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002441
">
<
emph
type
="
center
"/>
PROP. CCXXIII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002442
">
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Si duæ fistulæ inæqualiter altæ habuerint orificia æqualia,
<
lb
/>
atque ex eis egrediantur moles aquæ æquales, tempora
<
lb
/>
effluxuum habebunt ſubduplicatam proportionem reci
<
lb
/>
procam altitudinum fistularum.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002443
">SIt altitudo fiſtulæ AB maior, quàm CD, & eorum
<
lb
/>
orificia B, D æqualia, & ex B egrediatur moles
<
lb
/>
aquæ R tempore T, ex D verò profluat moles aquæ
<
lb
/>
S æqualis ipſi R tempore V, & vt priùs, ſit BE media
<
lb
/>
proportionalis inter AB, &
<
lb
/>
<
figure
id
="
id.010.01.471.1.jpg
"
xlink:href
="
010/01/471/1.jpg
"
number
="
161
"/>
<
lb
/>
CD; dico tempus V ad T
<
expan
abbr
="
eã-dem
">ean
<
lb
/>
dem</
expan
>
proportionem haberę,
<
lb
/>
<
expan
abbr
="
quã
">quam</
expan
>
EB ad CD, ſit moles aquæ
<
lb
/>
X illa, quæ defluit ab orificio
<
lb
/>
D eodem tempore T, igitur
<
lb
/>
<
arrow.to.target
n
="
marg631
"/>
<
lb
/>
vt moles aquæ R ad X, ita erit
<
lb
/>
altitudo EB ad CD, poſteą
<
lb
/>
quia ab eodem oriſicio D fi
<
lb
/>
ſtulæ CD exeunt duæ moles
<
lb
/>
aqueæ X, & S temporibus T,
<
lb
/>
<
arrow.to.target
n
="
marg632
"/>
<
lb
/>
& V, igitur vt
<
expan
abbr
="
tẽpus
">tempus</
expan
>
V ad T, ita ſe habet moles aquæ
<
lb
/>
S ad X: ſunt verò moles aquæ R, & S ex hypotheſi,
<
lb
/>
æquales, igitur ad eamdem molem X eamdem pro
<
lb
/>
portionem habent; eſt verò EB ad CD vt R ad X;
<
lb
/>
atque V ad T vt S ad X; igitur altitudo EB ad CD
<
expan
abbr
="
eã-dem
">ean
<
lb
/>
dem</
expan
>
proportionem habebit, quam tempus V ad T. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002444
">
<
margin.target
id
="
marg631
"/>
Prop. 221.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002445
">
<
margin.target
id
="
marg632
"/>
Prop. 222.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002446
">
<
emph
type
="
center
"/>
PROP. CCXXIV.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002447
">
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Duæ moles aquæ eodm tempore egredientes ex orificijs inæ-
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>