Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <pb pagenum="442" xlink:href="010/01/450.jpg"/>
            <p type="main">
              <s id="s.002301">
                <arrow.to.target n="marg594"/>
              </s>
            </p>
            <p type="margin">
              <s id="s.002302">
                <margin.target id="marg594"/>
              Cap. 10. de
                <lb/>
              æquitempo­
                <lb/>
              ranea natu­
                <lb/>
              rali veloci­
                <lb/>
              tate
                <expan abbr="grauiũ">grauium</expan>
              .</s>
            </p>
            <p type="main">
              <s id="s.002303">
                <emph type="center"/>
              PROP. CCVII.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.002304">
                <emph type="center"/>
                <emph type="italics"/>
              Corpora homogenea commenſurabilem proportionem haben­
                <lb/>
              tia æquè velocitèr deſcendent ablatis omnibus impe­
                <lb/>
              dimentis.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.002305">SInt quęlibet duo corpora homogenea A, & B, quę
                <lb/>
              habeant quamcumque commenſurabilem pro­
                <lb/>
              portionem. </s>
              <s id="s.002306">Dico, quod ex ſui na­
                <lb/>
                <figure id="id.010.01.450.1.jpg" xlink:href="010/01/450/1.jpg" number="150"/>
                <lb/>
              tura ablatis omnibus
                <expan abbr="impedimẽ-tis">impedimen­
                  <lb/>
                tis</expan>
              , hæc duo corpora æquali velo­
                <lb/>
              citate deſcendent, nempè eodem
                <lb/>
              tempore T percurrent duo ſpatia
                <lb/>
              D, & E inter ſe æqualia. </s>
              <s id="s.002307">Reperia­
                <lb/>
              tur corpus C homogeneum ipſis
                <lb/>
              A, & B, quod communis menſura
                <lb/>
              ſit eorum; hoc verò tempore T deſcendat ſpatium F; &
                <lb/>
              quia duorum corporum ſimiliarium A multiplex eſt
                <lb/>
                <arrow.to.target n="marg595"/>
                <lb/>
              ipſius C, ergo æquè velocia erunt, nempè ſpatia D, &
                <lb/>
              F eodem tempore T exacta æqualia ſunt inter ſe. </s>
              <s id="s.002308">ea­
                <lb/>
              dem ratione duo ſpatia E, & F tranſacta eodem tem­
                <lb/>
              pore T ab homogeneis corporibus B, & C
                <expan abbr="multiplicẽ">multiplicem</expan>
                <lb/>
              proportionem habentibus æqualia erunt inter ſę;
                <lb/>
              vnde ſequitur quod duo ſpatia D, & E. excurſa
                <expan abbr="eodẽ">eodem</expan>
                <lb/>
              tempore T ab homogeneis corporibus A, & B æqua­
                <lb/>
              lia ſint inter ſe, cùm æquentur vni tertio F. </s>
              <s id="s.002309">Quare pa­
                <lb/>
              tet propoſitum.
                <lb/>
                <figure id="id.010.01.450.2.jpg" xlink:href="010/01/450/2.jpg" number="151"/>
              </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>