Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
pb
pagenum
="
442
"
xlink:href
="
010/01/450.jpg
"/>
<
p
type
="
main
">
<
s
id
="
s.002301
">
<
arrow.to.target
n
="
marg594
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002302
">
<
margin.target
id
="
marg594
"/>
Cap. 10. de
<
lb
/>
æquitempo
<
lb
/>
ranea natu
<
lb
/>
rali veloci
<
lb
/>
tate
<
expan
abbr
="
grauiũ
">grauium</
expan
>
.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002303
">
<
emph
type
="
center
"/>
PROP. CCVII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002304
">
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Corpora homogenea commenſurabilem proportionem haben
<
lb
/>
tia æquè velocitèr deſcendent ablatis omnibus impe
<
lb
/>
dimentis.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002305
">SInt quęlibet duo corpora homogenea A, & B, quę
<
lb
/>
habeant quamcumque commenſurabilem pro
<
lb
/>
portionem. </
s
>
<
s
id
="
s.002306
">Dico, quod ex ſui na
<
lb
/>
<
figure
id
="
id.010.01.450.1.jpg
"
xlink:href
="
010/01/450/1.jpg
"
number
="
150
"/>
<
lb
/>
tura ablatis omnibus
<
expan
abbr
="
impedimẽ-tis
">impedimen
<
lb
/>
tis</
expan
>
, hæc duo corpora æquali velo
<
lb
/>
citate deſcendent, nempè eodem
<
lb
/>
tempore T percurrent duo ſpatia
<
lb
/>
D, & E inter ſe æqualia. </
s
>
<
s
id
="
s.002307
">Reperia
<
lb
/>
tur corpus C homogeneum ipſis
<
lb
/>
A, & B, quod communis menſura
<
lb
/>
ſit eorum; hoc verò tempore T deſcendat ſpatium F; &
<
lb
/>
quia duorum corporum ſimiliarium A multiplex eſt
<
lb
/>
<
arrow.to.target
n
="
marg595
"/>
<
lb
/>
ipſius C, ergo æquè velocia erunt, nempè ſpatia D, &
<
lb
/>
F eodem tempore T exacta æqualia ſunt inter ſe. </
s
>
<
s
id
="
s.002308
">ea
<
lb
/>
dem ratione duo ſpatia E, & F tranſacta eodem tem
<
lb
/>
pore T ab homogeneis corporibus B, & C
<
expan
abbr
="
multiplicẽ
">multiplicem</
expan
>
<
lb
/>
proportionem habentibus æqualia erunt inter ſę;
<
lb
/>
vnde ſequitur quod duo ſpatia D, & E. excurſa
<
expan
abbr
="
eodẽ
">eodem</
expan
>
<
lb
/>
tempore T ab homogeneis corporibus A, & B æqua
<
lb
/>
lia ſint inter ſe, cùm æquentur vni tertio F. </
s
>
<
s
id
="
s.002309
">Quare pa
<
lb
/>
tet propoſitum.
<
lb
/>
<
figure
id
="
id.010.01.450.2.jpg
"
xlink:href
="
010/01/450/2.jpg
"
number
="
151
"/>
</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>