Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.002559
">
<
pb
pagenum
="
485
"
xlink:href
="
010/01/493.jpg
"/>
<
arrow.to.target
n
="
marg667
"/>
<
lb
/>
tempore V percurrat ſpatium Z, & fiat IB medią
<
lb
/>
proportionalis inter altitudines AB, & DE. dico
<
expan
abbr
="
tẽ-pus
">tem
<
lb
/>
pus</
expan
>
T minus eſſe
<
expan
abbr
="
tẽpore
">tempore</
expan
>
V, ſed
<
expan
abbr
="
tẽpus
">tempus</
expan
>
V ad T
<
expan
abbr
="
minorẽ
">minorem</
expan
>
<
lb
/>
<
expan
abbr
="
proportionẽ
">proportionem</
expan
>
habere,
<
expan
abbr
="
quã
">quam</
expan
>
IB habet ad DE; fiat vel in
<
lb
/>
telligatur figura GBC æquè alta, ac eſt DEF
<
expan
abbr
="
eiuſdẽ-que
">eiuſdem
<
lb
/>
que</
expan
>
materiei habens
<
expan
abbr
="
eãdẽ
">eandem</
expan
>
baſim BC, hac lege vt mo
<
lb
/>
les ABC ad GBC eamdem
<
expan
abbr
="
proportionẽ
">proportionem</
expan
>
habeat, quam
<
lb
/>
altitudo AB ad GB, ſitque Y tempus, quo GBC ſur
<
lb
/>
ſum infra aquam aſcendendo percurrit idem ſpatium
<
lb
/>
X. quoniam ſunt duo folida homogenea ABC, & GB
<
lb
/>
C eamdem baſim BC habentia, quorum moles eam
<
lb
/>
dem proportionem habent, quam altitudo AB ad G
<
lb
/>
B, ſeù ad DE, & ſimiliter poſita ſunt dum aſcendunt
<
lb
/>
<
arrow.to.target
n
="
marg668
"/>
<
lb
/>
per ſpatia æqualia X, X; igitur tempus T, quo ABC
<
lb
/>
pertranſit ſpatium X ad tempus Y, quo GBC idipſum
<
lb
/>
ſpatium percurrit, eamdem proportionem habet,
<
expan
abbr
="
quã
">quam</
expan
>
<
lb
/>
DE ad IB. poſtea quia ſunt duo alia ſolida homogenea
<
lb
/>
æquè alta GBC, & DEF quorum baſes planæ BC, &
<
lb
/>
EF eamdem proportionem habent, quam moles eo
<
lb
/>
rum, ergo tempora Y, & V, quibus in eodem fluido
<
lb
/>
<
arrow.to.target
n
="
marg669
"/>
<
lb
/>
aqueo aſcendendo percurrunt ſpatia æqualia X, & Z
<
lb
/>
parùm inter ſe differunt, eritque tempus V minus
<
expan
abbr
="
quã
">quam</
expan
>
<
lb
/>
Y, ſed maiorem proportionem ad ipſum habet, quàm
<
lb
/>
DE ad IB, ac proindè tempus V maius erit, quàm T,
<
lb
/>
& ideò celeriùs aſcendet ABC, quàm DEF, ſed iņ
<
lb
/>
minori proportione, quam habet IB ad DE, idemque
<
lb
/>
concludetur in deſcenſu, quod erat &c. </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>